Skip to main content
Log in

SLLN for Weighted Independent Identically Distributed Random Variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

For any sequence {a k } with sup \(\frac{1}{n}\sum {_{k = 1}^n \left| {a_k } \right|^q } < \infty \) for some q>1, we prove that \(\frac{1}{n}\sum {_{k = 1}^n {\text{ }}a_k X_k } \) converges to 0 a.s. for every {X n } i.i.d. with E(|X 1|)<∞ and E(X 1)=0; the result is no longer true for q=1, not even for the class of i.i.d. with X 1 bounded. We also show that if {a k } is a typical output of a strictly stationary sequence with finite absolute first moment, then for every i.i.d. sequence {X n { with finite absolute pth moment for some p> 1,\(\frac{1}{n}\sum {_{k = 1}^n {\text{ }}a_k X_k } \) converges a.s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Aaronson, J. (1977). On the ergodic theory of non-integrable functions and infinite measure spaces. Israel J. Math. 27, 163-173.

    Google Scholar 

  2. Akcoglu, M. A. (1975). A pointwise ergodic theorem in Lp spaces. Canada J. Math. 27, 1075-1082.

    Google Scholar 

  3. Assani, I. (1997). Strong laws for weighted sums of independent identically distributed random variables. Duke Math. J. 88, 217-246.

    Google Scholar 

  4. Assani, I. (1997). Convergence of the p-series for stationary sequences. New York J. Math. 3A, 15-30.

    Google Scholar 

  5. Assani, I. (1998). A weighted pointwise ergodic theorem. Ann. Inst. H. Poincaré Probab. Statist. 34, 139-150.

    Google Scholar 

  6. Chow, Y. S. (1965). Local convergence of martingales and the law of large numbers. Ann. Math. Stat. 36, 552-558.

    Google Scholar 

  7. Chow, Y. S., and Lai, T. L. (1973). Limiting behavior of weighted sums of independent random variables. Ann. Probab. 1, 810-824.

    Google Scholar 

  8. Chung, K. L. (1947). Note on some strong laws of large numbers. Amer. J. Math. 69, 189-192.

    Google Scholar 

  9. Cohen, G., and Lin, M. (2003). Laws of large numbers with rates and the one-sided ergodic Hilbert transform. Illinois J. Math. 47, 997-1031.

    Google Scholar 

  10. Cuzick, J. (1995). A strong law for weighted sums of i.i.d. random variables. J. Theoret. Probab. 8, 625-636; Cuzick, J.Erratum. J. Theoret. Probab. 14 (2001).

    Google Scholar 

  11. Derriennic, Y., and Lin, M. (2001). Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123, 93-130.

    Google Scholar 

  12. Jamison, B., Orey, S., and Pruitt, W. (1965). Convergence of weighted averages of independent random variables. Z. Wahrsch. Verw. Gebiete 4, 40-44.

    Google Scholar 

  13. Jones, R. L. (1977). Inequalities for the ergodic maximal function. Studia Math. 60, 111-129.

    Google Scholar 

  14. Krengel, U. (1985). Ergodic Theorems, de Gruyter, Berlin.

    Google Scholar 

  15. Landers, D., and Rogge, L. (1997). Laws of large numbers for uncorrelated Cesaro uniformly integrable random variables. Sankhyma Ser. A 59, 301-310.

    Google Scholar 

  16. Lin, M., Olsen, J., and Tempelman, A. (1999). On modulated ergodic theorems for Dunford–Schwartz operators. Illinois J. Math. 43, 542-567.

    Google Scholar 

  17. Marcinkiewicz, J., and Zygmund, A. (1937). Sur les fonctions indépendentes. Fund. Math. 29, 60-90.

    Google Scholar 

  18. Petersen, K. (1983). Ergodic Theory, Cambridge University Press, Cambridge.

    Google Scholar 

  19. Pruitt, W. (1966). Summability of independent random variables. J. Math. Mech. 15, 769-776.

    Google Scholar 

  20. Rudolph, D. (1994). A joinings proof of Bourgain's return time theorem. Ergodic Theory Dynam. Systems 14, 197-203.

    Google Scholar 

  21. Ryll-Nardzewski, C. (1975). Topics in Ergodic Theory, Springer Lecture Notes in Math., Vol.472, pp. 131-156.

    Google Scholar 

  22. Sawyer, S. (1966). Maximal inequalities of weak type. Ann. Math. 84, 157-174.

    Google Scholar 

  23. Stout, W. (1974). Almost Sure Convergence, Academic Press, New York.

    Google Scholar 

  24. Tempelman, A. (1974). Ergodic theorems for amplitude modulated homogeneous random fields. Lithuanian J. Math. 14, 221-229 (in Russian; English translation (1975): Lith. Math. Transl. 14, 698–704).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, J., Jones, R., Lin, M. et al. SLLN for Weighted Independent Identically Distributed Random Variables. Journal of Theoretical Probability 17, 165–181 (2004). https://doi.org/10.1023/B:JOTP.0000020480.84425.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000020480.84425.8d

Navigation