Skip to main content
Log in

On a Statistical Framework for Estimation from Random Set Observations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Using the theory of random closed sets, we extend the statistical framework introduced by Schreiber(11) for inference based on set-valued observations from the case of finite sample spaces to compact metric spaces with continuous distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Dupuis, P., and Ellis, R. S. (1997). A Weak Convergence Approach to the Theory of Large Deviations, Wiley.

  2. Falconer, K. J. (1986). The Geometry of Fractal Sets, Cambridge University Press.

  3. Gill, R. D., van der Laan, M. J., and Robins, J. M. (1997). Coarsening at random: Characterizations, conjectures, counter-examples. In Lin, D. Y., and Fleming, T. R. (eds.), Proceedings of the First Seattle Symposium in Biostatistics, Lecture Notes in Statistics, Vol.123, Springer-Verlag, New York, pp. 255-294.

    Google Scholar 

  4. Hartigan, J. A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82(357), 267-270.

    Google Scholar 

  5. Heitjan, D. F., and Rubin, D. B. (1991). Ignorability and coarse data. Ann. Statist. 23, 774-786.

    Google Scholar 

  6. Matheron, G. (1975). Random Sets and Integral Geometry, Wiley.

  7. Molchanov, I. S. (1993). Limit Theorems for Unions of Random Closed Sets, Lecture Notes in Mathematics, Vol.1561, Springer-Verlag.

  8. Molchanov, I. S. (1997). Statistics of the Boolean Model for Practitioners and Mathematicians, Wiley.

  9. Norberg, T. (1992). On the existence of ordered couplings of random sets—with applications. Israel J. Math. 77, 241-264.

    Google Scholar 

  10. Polonik, W. (1995). Density estimation under qualitative assumptions in higher dimensions. J. Multi. Anal. 55, 61-81.

    Google Scholar 

  11. Schreiber, T. (2000). Statistical inference from set-valued observations. Prob. Math. Statist. 20, 223-235.

    Google Scholar 

  12. Shapley, L. S. (1971). Cores of convex games. Internat. J. Game Theory 1, 11-26.

    Google Scholar 

  13. van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence of Empirical Processes, Springer, New York.

    Google Scholar 

  14. van der Vaart, A. W., and Wellner, J. A. (2000). Preservation theorems for Glivanko– Cantelli and uniform Glivanko–Cantelli classes. In Gine, E., Mason, D., and Wellner, J. A. (eds.), High Dimensional Probability II, Birkhäuser, Boston, pp. 113-132.

    Google Scholar 

  15. Walters, P. (1982). An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol.79, Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, DJ., Feng, D. On a Statistical Framework for Estimation from Random Set Observations. Journal of Theoretical Probability 17, 85–110 (2004). https://doi.org/10.1023/B:JOTP.0000020476.12997.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000020476.12997.c2

Navigation