Skip to main content
Log in

On Strongly Petrovskii's Parabolic SPDEs in Arbitrary Dimension and Application to the Stochastic Cahn–Hilliard Equation

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we show that the Cahn–Hilliard stochastic PDE has a function valued solution in dimension 4 and 5 when the perturbation is driven by a space-correlated Gaussian noise. We study the regularity of the trajectories of the solution and the absolute continuity of its law at some given time and position. This is done by showing a priori estimates which heavily depend on the specific equation, and by proving general results on stochastic and deterministic integrals involving general operators on smooth domains of ℝd which are parabolic in the sense of Petrovskii, and do not necessarily define a semi-group of operators. These last estimates might be used in a more general framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R. A. (1975). Sobolev Spaces, Academic Press, New York.

    Google Scholar 

  2. Bally, V., Millet, A., and Sanz-Solé, M. (1995). Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23, 178-222.

    Google Scholar 

  3. Brzezniak, Z., and Peszat, S. (1999). Space-time continuous solutions to SPDEs driven by a homogeneous Wiener process. Studia Math. 137, 262-299.

    Google Scholar 

  4. Cardon-Weber, C. (2001). Cahn–Hilliard equation: Existence of the solution and of its density. Bernoulli 7, 777-816.

    Google Scholar 

  5. Cardon-Weber, C. (2002). Cahn–Hilliard stochastic equation: Strict positivity of the density. Stochastics Stochastic Rep. 72, 191-227.

    Google Scholar 

  6. Dalang, R. (1999). Extending martingale measure stochastic integral with applications to spatially homogeneous SPDEs. Electron. J. Probab. 4, 1-29, http://www.math.washington.edu/∼ejpecp/EjpVol4/paper6.abs.html.

    Google Scholar 

  7. Dalang, D., and Frangos, N. (1998). The stochastic wave equation in two-spatial dimensions. Ann. Probab. 26(1), 187-212.

    Google Scholar 

  8. Da Prato, G., and Debussche, A. (1996). Stochastic Cahn–Hilliard equation. Nonlinear Anal. 26, 241-263.

    Google Scholar 

  9. Da Prato, G., Debussche, A., and Temam, R. (1994). Stochastic Burger's Equation, Nonlinear Differential Equations and Applications, Birkhäuser, pp. 389-402.

  10. Da Prato, G., and Zabczyk, J. (1992). Stochastic equations in infinite dimensions. In Encyclopedia of Mathematics and Its Applications, Cambridge University Press.

  11. Debussche, A., and de Bouard, A. (1998). On the stochastic Korteweg–de Vries equation. J. Funct. Anal. 154, 215-251.

    Google Scholar 

  12. Eidelman, S. D., and Ivasisen, N. V. (1970). Investigation on the Green matrix for a homogeneous parabolic boundary value problem. Trans. Moscow Math. Soc. 23, 179-243.

    Google Scholar 

  13. Eidelman, S. D., and Zhitarashu, N. V. (1998). Parabolic Boundary Value Problems, Birkhäuser, Basel.

    Google Scholar 

  14. Garsia, A. (1972). Continuity properties of Gaussian processes with multi-dimensional time parameter. In Proc. Sixth Berkeley Symp. Math. Statist. Probab., pp. 369-374.

  15. Gyöngy, I. (1998). Existence and uniqueness results for semi linear stochastic partial differential equations. Stochastic Process. Appl. 73, 271-299.

    Google Scholar 

  16. Karkzewska, A., and Zabczyk, J. (1998). A note on stochastic wave equations, evolution equations, and their applications in physical and life sciences. In Proceedings of the 6th International Conference, Bad Herrenhalb, Marcel Dekker.

  17. Karkzewska, A., and Zabczyk, J. (2000). Stochastic PDEs with function-valued solutions. In Infinite Dimensional Stochastic Analysis, Proceedings of the Colloquium, Amsterdam 1999, Verhandelingen, Afd. Natuurkunde, Vol.52, Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 197-216.

    Google Scholar 

  18. Lions, P. L., and Magenes, E. (1968). FrProblèmes aux limites non homogènes et applications, Vol.1, Dunod.

  19. Métivier, M. (1982). Semimartingales, de Gruyter, Berlin.

    Google Scholar 

  20. Millet, A., and Morien, P. L. (2000). On a stochastic wave equation in two space dimension: Regularity of the solution and its density. Stochastic Process. Appl. 86, 141-162.

    Google Scholar 

  21. Millet, A., and Morien, P. L. (2001). On a non linear stochastic wave equation in the plane: Existence and uniqueness of the solution. Ann. Appl. Probab. 11, 922-951.

    Google Scholar 

  22. Millet, A., and Sanz-Solé, M. (1999). A stochastic wave equation in two space dimension: Smoothness of the law. Ann. Probab. 27, 803-844.

    Google Scholar 

  23. Mueller, C. (1997). Long time existence for the wave equation with a noise term. Ann. Probab. 25, 133-151.

    Google Scholar 

  24. Nualart, D. (1995). The Malliavin Calculus and Related Topics, Springer-Verlag, Berlin.

    Google Scholar 

  25. <bib-other>Peszat, S. (2002). SPDEs driven by a homogeneous Wiener process. Stochastic partial differential equations and applications (Trento 2002), Lectures Notes in Pure and Appl. Math. 227, pp. 417-427.

    Google Scholar 

  26. Peszat, S., and Zabczyk, J. (1997). Stochastic evolution equations with spatially homogeneous Wiener process. Stochastic Process. Appl. 72, 187-204.

    Google Scholar 

  27. Peszat, S., and Zabczyk, J. (2000). Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116, 421-443.

    Google Scholar 

  28. Schwartz, L. (1966). FrTheorie des distributions, Hermann, Paris.

    Google Scholar 

  29. Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In FrÉcole d'été de probabilités de Saint-Flour XIV, 1984, Lecture Notes in Math., Vol.1180, Springer-Verlag, pp. 265-439.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardon-Weber, C., Millet, A. On Strongly Petrovskii's Parabolic SPDEs in Arbitrary Dimension and Application to the Stochastic Cahn–Hilliard Equation. Journal of Theoretical Probability 17, 1–49 (2004). https://doi.org/10.1023/B:JOTP.0000020474.79479.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000020474.79479.fa

Navigation