Skip to main content
Log in

Singularly Perturbed Problems in Case of Exchange of Stabilities

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. H. Amann, “Existence and stability of solutions for semi-linear parabolic systems and applications to some diffusion-reaction equations,” Proc. Roy. Soc. Edinburgh, Sec. A, 81, 35–47 (1978).

    Google Scholar 

  2. E. Benoît (Ed.), Dynamic Bifurcation, Lect. Notes Math., 1493, Springer-Verlag, New York (1991).

    Google Scholar 

  3. V. F. Butuzov, “Singularly perturbed parabolic equations in case of intersecting roots of the degenerate equation,” Russ. J. Math. Phys., 9, 50–59 (2002).

    Google Scholar 

  4. V. F. Butuzov and E. A. Gromova, “Limit theorem for a Tikhonov system of equations,” Comput. Math. Math. Phys., 40, 669–679 (2000).

    Google Scholar 

  5. V. F. Butuzov and E. A. Gromova, “A boundary-value problem for a system of fast and slow second-order equations in the case of intersecting roots of the degenerate equation,” Zh. Vychisl. Mat. Mat. Fiz., 41, 1165–1179 (2001).

    Google Scholar 

  6. V. F. Butuzov and N. N. Nefedov, “Singularly perturbed boundary-value problems for a second-order equation in case of exchange of stability,” Mat. Zametki, 63, 354–362 (1998).

    Google Scholar 

  7. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, Singularly perturbed boundary-value problems in case of exchange of stabilities,” J. Math. Anal. Appl., 229, 543–562 (1999).

    Google Scholar 

  8. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider,” “Singularly perturbed boundary-value problems for systems of Tikhonov's type in case of exchange of stabilities,” J. Differ. Equations, 159, 427–446 (1999).

    Google Scholar 

  9. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, “Singularly perturbed reaction-diffusion systems in cases of exchange of stabilities,” Nat. Resour. Model., 13, 247–269 (2000).

    Google Scholar 

  10. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, Singularly perturbed partly dissipative reaction-diffusion systems in case of exchange of stabilities, Preprint No. 572, Weierstraß-Inst. Angew. Anal. Stochastik, Berlin (2000).

    Google Scholar 

  11. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, “Singularly perturbed elliptic problems in the case of exchange of stabilities,” J. Differ. Equations, 169, 373–395 (2001).

    Google Scholar 

  12. V. F. Butuzov, N. N. Nefedov, and K. R. Schneider, On a class of singularly perturbed partly dissipative reaction-diffusion systems, Preprint No. 646, Weierstraß-Inst. Angew. Anal. Stochastik, Berlin (2001).

    Google Scholar 

  13. V. F. Butuzov and A. V. Nesterov, “On some singularly perturbed problems with nonsmoooth boundary functions,” Dokl. Akad. Nauk SSSR, 263, 786–789 (1982).

    Google Scholar 

  14. V. F. Butuzov and I. Smurov, “Initial-boundary-value problem for a singularly perturbed parabolic equation in case of exchange of stability,” J. Math. Anal. Appl., 234, 183–192 (1999).

    Google Scholar 

  15. V. F. Butuzov and A. B. Vasil'eva, “Singularly perturbed problems with boundary and interior layers: theory and applications,” Adv. Chem. Phys., 97, 47–179 (1997).

    Google Scholar 

  16. V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryuk, “Asymptotic methods in the theory of ordinary differential equations,” In: Itogi Nauki Tekh., Ser. Mat. Anal., All-Union Institute for Scientific and Technical Information, Moscow (1967).

    Google Scholar 

  17. J. L. Callot, F. Diener, and M. Diener, “Le probleme de la 'chasse au canard',” C. R. Acad. Sci., Paris, Ser. A, 286, 1059–1061 (1978).

    Google Scholar 

  18. K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Application, Springer-Verlag, New York (1984).

    Google Scholar 

  19. S. A. Chaplygin, A New Method for the Integration of Differential Equations [in Russian], GITL, Moscow-Leningrad (1950).

    Google Scholar 

  20. J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Stud. Math. Biology, 7, Cambridge Univ. Press, Cambridge (1987).

    Google Scholar 

  21. J. Cronin and R. E. O'Malley, Jr. (Eds.), Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proc. Symp. Appl. Math., 56, Am. Math. Soc., Providence, Rhode Island (1999).

    Google Scholar 

  22. M. Diener, “Deux nouveaux 'phenomenes-canard,'” C. R. Acad. Sci., Paris, Ser. A, 290, 541–544 (1980).

    Google Scholar 

  23. F. Dumortier and B. Smits, “Transition time analysis in singularly perturbed boundary-value problems,” Trans. Am. Math. Soc., 347, 4129–4145 (1995).

    Google Scholar 

  24. F. Dumortier and R. Roussarie, Canard Cycles and Center Manifolds, Mem. Am. Math. Soc., 577, Am. Math. Soc., Providence, Rhode Island (1996).

    Google Scholar 

  25. W. Eckhaus, “Relaxation oscillations including a standard chase on french ducks,” Lect. Notes Math., 985, 449–494 (1983).

  26. W. Eckhaus and E. M. de Jager (Eds.), Theory and Applications of Singular Perturbations, Lect. Notes Math., 942, Springer-Verlag, Berlin (1982).

    Google Scholar 

  27. T. Erneux and P. Mandel, “Imperfect bifurcation with a slowly-varying control parameter,” SIAM J. Appl. Math., 46, 1–15 (1986).

    Google Scholar 

  28. T. Erneux and P. Mandel, “The slow passage through a steady state bifurcation: Delay and memory effects,” J. Stat. Phys., 48, 1059–1069 (1987).

    Google Scholar 

  29. P. Fabrie and C. Galusinski, “Exponential attractors for a partially dissipative reaction system,” Asympt. Anal., 12, 329–354 (1996).

    Google Scholar 

  30. M. V. Fedoryuk, “Equations with rapidly oscillating solutions,” In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravl., 34, All-Union Institute for Scientific and Technical Information, Moscow (1988), pp. 5–56.

    Google Scholar 

  31. N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” J. Differ. Equations, 31, 53–98 (1979).

    Google Scholar 

  32. L. S. Frank, Singular Perturbations in Elasticity Theory, Anal. Its Appl., 1, IOS Press, Amsterdam (1997).

    Google Scholar 

  33. J. Grasman, Asymptotic Methods for Relaxation Oscillations and Applications, Appl. Math. Sci., 63, Springer-Verlag, New York (1987).

    Google Scholar 

  34. J. Guckenheimer and Yu. Ilyashenko, “The duck and the devil: Canards on the staircase,” Moscow Math. J., 1, 27–47 (2001).

    Google Scholar 

  35. V. V. Gudkov, Yu. A. Klokov, Ya. Lepin, and V. D. Ponomarev, Two-Point Boundary-Value Problems for Ordinary Differential Equations, [in Russian], Zinatne, Riga (1973).

    Google Scholar 

  36. R. Haberman, “Slowly varying jump and transition phenomena associated with algebraic bifurcation problems,” SIAM J. Appl. Math., 37, 69–106 (1979).

    Google Scholar 

  37. K. P. Hadeler, “Quasimonotone systems and convergence to equilibrium in a population genetic model,” J. Math. Anal. Appl., 95, 297–303 (1983).

    Google Scholar 

  38. M. W. Hirsch, “Systems of differential equations which are competitive or cooperative, I. Limit sets,” SIAM J. Math. Anal., 13, 167–179 (1982).

    Google Scholar 

  39. S. L. Hollis and J. J. Morgan, “Partly dissipative reaction-diffusion systems and a model of phosphorus diffusion in silicon,” Nonlin. Anal. Theory Methods Appl., 19, 427–440 (1992).

    Google Scholar 

  40. F. Hoppensteadt, “Properties of solutions of ordinary differential equations with small parameters,” Commun. Pure Appl. Math., 24, 807–840 (1971).

    Google Scholar 

  41. F. C. Hoppenstedt and E. M. Izhikevich, Weakly Connected Neural Networks, Appl. Math. Sci., 126, Springer-Verlag, New York (1997).

    Google Scholar 

  42. A. M. Il'in, “The boundary layer,” In: Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. Fundam. Napravl., 34, All-Union Institute for Scientific and Technical Information, Moscow (1988), pp. 175–213.

    Google Scholar 

  43. L. K. Jackson, “Sub-functions and second-order ordinary differential equations,” Adv. Math., 2, 308–363 (1968).

    Google Scholar 

  44. S. Karimov, “The asymptotics of the solutions of some classes of differential equations with a small parameter at the highest derivatives in case of exchange of stability of the equilibrium point in the plane of fast motions,” Differ. Equations, 21, 1136–1139 (1985)

    Google Scholar 

  45. J. P. Keener, Principles of Applied Mathematics: Transformation and Approximation, Addison-Wesley, Redwood City (1988).

    Google Scholar 

  46. J. K. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Appl. Math. Sci., 114, Springer-Verlag, Berlin (1996).

    Google Scholar 

  47. P. Kokotovic, A. Bensoussan, and G. Blankenship (Eds.), Singular Perturbations and Asymptotic Analysis in Control Systems, Lect. Notes Control Information Sci., 90, Springer-Verlag, Berlin (1987).

    Google Scholar 

  48. P. Kokotovic, H. K. Khalil, and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design, Classics in Appl. Math., 25, SIAM, Philadelphia (1999).

    Google Scholar 

  49. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “Solution to singularly perturbed boundary-value problems by the duck hunting method,” Proc. Steklov Inst. Math., 224, 169–188 (1999).

    Google Scholar 

  50. A. Yu. Kolesov and N. Kh. Rozov, “'Chase on ducks' in the investigation of singularity perturbed boundary-value problems,” Differ. Equations, 35, 1374–1383 (1999).

    Google Scholar 

  51. Yu. S. Kolesov and N. Kh. Rozov, “Duck cycles of difference-differential equations,” Mosc. Univ. Math. Bull., 50,No. 1, 10–14 (1995).

    Google Scholar 

  52. M. Krupa and P. Szmolyan, “Relaxation oscillation and canard explosion,” J. Differ. Equations, 174, 312–368 (2001).

    Google Scholar 

  53. M. Krupa and P. Szmolyan, “Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions,” SIAM J. Math. Anal., 33, 286–314 (2001).

    Google Scholar 

  54. N. R. Lebovitz, “Bifurcation and unfolding in systems with two time scales,” Ann. N. Y. Acad. Sci., 617, 73–86 (1990).

    Google Scholar 

  55. N. R. Lebovitz and A. I. Pesci, “Dynamic bifurcation in Hamiltonian systems with one degree of freedom,” SIAM J. Appl. Math., 55, 1117–1133 (1995).

    Google Scholar 

  56. N. R. Lebovitz and R. J. Schaar, “Exchange of stabilities in autonomous systems,” Stud. Appl. Math., 54, 229–260 (1975).

    Google Scholar 

  57. N. R. Lebovitz and R. J. Schaar, “Exchange of stabilities in autonomous systems, II. Vertical bifurcation,” Stud. Appl. Math., 56, 1–50 (1977).

    Google Scholar 

  58. M. Levinson, “Perturbations of discontinuous solutions of nonlinear systems of differential equations,” Acta Math., 82, 71–106 (1951).

    Google Scholar 

  59. M. Marion, “Inertial manifolds associated to partly dissipative reaction-diffusion systems,” J. Math. Anal. Appl., 143, 295–326 (1989).

    Google Scholar 

  60. M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems,” SIAM J. Math. Anal., 20, 816–844 (1989).

    Google Scholar 

  61. E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameter and Relaxation Oscillations, Plenum Press, New York (1980).

    Google Scholar 

  62. E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Asymptotic Methods in Singularly Perturbed Systems, Consultants Bureau, New York (1994).

    Google Scholar 

  63. R. M. Miura (Ed.), Some Mathematical Questions in Biology and Neurobiology, Lect. Notes Math. Life Sci., 15, Am. Math. Soc., Providence, Rhode Island (1982).

    Google Scholar 

  64. M. Müller, “Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen,” Math. Z., 26, 619–645 (1926).

    Google Scholar 

  65. J. A. Murdock, Perturbations: Theory and Methods, Wiley, New York (1991).

    Google Scholar 

  66. J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin (1993).

    Google Scholar 

  67. M. Nagumo, “Über das Randwertproblem der nichtlinearen gewöhnlichen Differentialgleichungen zweiter Ordnung,” Proc. Phys.-Math. Soc. Japan, III. Ser., 24, 845–851 (1942).

    Google Scholar 

  68. N. N. Nefedov, “The method of differential inequalities for some singularly perturbed partial differential problems,” Differ. Uravn., 31, 719–722 (1993).

    Google Scholar 

  69. N. N. Nefedov and K. R. Schneider, Delayed exchange of stabilities in singularly perturbed systems, Preprint No. 270, Weierstraβ-Inst. Angew. Anal. Stochastik, Berlin (1996).

    Google Scholar 

  70. N. N. Nefedov and K. R. Schneider, “Immediate exchange of stabilities in singularly perturbed systems,” Differ. Int. Equations, 12, 583–599 (1999).

    Google Scholar 

  71. N. N. Nefedov, K. R. Schneider, and A. Schuppert, Jumping behavior in singularly perturbed systems modelling bimolecular reactions, Preprint No. 137, Weierstraβ-Inst. Angew. Anal. Stochastik, Berlin (1994).

    Google Scholar 

  72. N. N. Nefedov, K. R. Schneider, and A. Schuppert, “Jumping behavior of the reaction rate of fast bimolecular reactions,” Z. Angew. Math. Mech., 76,No. 2, 69–72 (1996).

    Google Scholar 

  73. A. I. Neishtadt, “On delayed stability loss under dynamic bifurcations, I,” Differ. Uravn., 23, 2060–2067 (1987).

    Google Scholar 

  74. A. I. Neishtadt, “On delayed stability loss under dynamic bifurcations, II,” Differ. Uravn., 24, 226–233 (1988).

    Google Scholar 

  75. R. E. O'Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer-Verlag, New York (1991).

    Google Scholar 

  76. D. Panazzolo, “On the existence of canard solutions,” Publ. Mat. Barc., 44, 503–592 (2000).

    Google Scholar 

  77. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York-London (1992).

    Google Scholar 

  78. L. S. Pontryagin and E. F. Mishchenko, “Some questions in the theory of differential equations with a small parameter,” Proc. Steklov Inst. Math., 169,No. 4, 103–122 (1986).

    Google Scholar 

  79. S. Schecter, “Persistent unstable equilibria and closed orbits of singularly perturbed equations,” J. Differ. Equations, 60, 131–141 (1985).

    Google Scholar 

  80. K. R. Schneider, “On the existence of wave trains in partly dissipative systems,” In: Proc. Int. Conf. Differential Equations (C. Perello, C. Simo, and J. Sola-Morales, Eds.), 2, World Scientific, Singapore (1993), pp. 893–898.

    Google Scholar 

  81. Z. Shao, “Existence of inertial manifolds for partly dissipative reaction-diffusion systems in higher space dimensions,” J. Differ. Equations, 144, 1–43 (1998).

    Google Scholar 

  82. M. A. Shishkova, “Study of a system of differential equations with a small parameter at the highest derivatives,” Dokl. Akad. Nauk SSSR, 209, 576–579 (1973).

    Google Scholar 

  83. E. A. Shchepakina and V. A. Sobolev, “Integral manifolds, canards, and black swans,” Nonlin. Anal., Theory, Methods, Appl., 44, 897–908 (2001).

    Google Scholar 

  84. V. A. Sobolev and E. A. Shchepakina, “Integral surfaces of duck-trajectories with changing stability,” Izv. Ross. Akad. Estestv. Nauk, Ser. MMMIU, 1,No. 3, 151–175 (1997).

    Google Scholar 

  85. A. N. Tikhonov, “On the dependence of solutions of differential equations on a small parameter,” Mat. Sb., 64, 193–204 (1948).

    Google Scholar 

  86. A. N. Tikhonov, “Systems of differential equations containing small parameters,” Mat. Sb., 73, 575–586 (1952).

    Google Scholar 

  87. A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singularly Perturbed Equations [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  88. A. B. Vasil'eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbation [in Russian], Vysshaya Shkola, Moscow (1990).

    Google Scholar 

  89. A. B. Vasil'eva, V. F. Butuzov, and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM Stud. Appl. Math., Philadelphia (1995).

    Google Scholar 

  90. A. B. Vasil'eva and M. G. Dimitriev, “Singular perturbations in problems of optimal control,” in: Itogi Nauki Tekhn., Ser. Mat. Anal., 20, All-Union Institute for Scientific and Technical Information, Moscow (1982), pp. 3–77.

    Google Scholar 

  91. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley, New York (1965).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butuzov, V.F., Nefedov, N.N. & Schneider, K.R. Singularly Perturbed Problems in Case of Exchange of Stabilities. Journal of Mathematical Sciences 121, 1973–2079 (2004). https://doi.org/10.1023/B:JOTH.0000021571.21423.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000021571.21423.52

Keywords

Navigation