Skip to main content
Log in

Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider the initial-value problem for a quasilinear heat-conduction or diffusion equation with variable density decreasing at infinity. We show that the asymptotic behavior of the given process is self-similar. Indeed, as t → ∞ the solution of the problem approaches a self-similar solution of a certain singular “limit” equation. The limit solution has compact support for any t > 0 and cusp-type shape at the space origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. G. Aronson, “Regularity properties of flows through porous media,” SIAM J. Appl. Math., 17, 461–467 (1969).

    Google Scholar 

  2. D. G. Aronson and L. A. Caffarelli, “The initial trace of a solution of the porous medium equation,” Trans. Amer. Math. Soc., 280, 351–366 (1983).

    Google Scholar 

  3. G. I. Barenblatt, “On some unsteady motions of a liquid and a gas in a porous medium,” Prikl. Mat. Mech., 16, 67–78 (1952).

    Google Scholar 

  4. G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press (1996, reprinted 1997).

  5. P. B. Bénilan, “Opérateurs accrétifs et semi-groupes dans les espaces L p (1 ⩽ p ⩽ ∞),” France-Japan Seminar, Tokyo (1976).

  6. P. B. Bénilan, M. G. Crandall, and M. Pierre, “Solutions of the porous medium equation in R N under optimal conditions on the initial values,” Indiana Univ. Math. J., 33, 51–87 (1984).

    Google Scholar 

  7. E. DiBenedetto, “Continuity of weak solutions to a general porous medium equation,” Indiana Univ. Math. J., 32, 83–118 (1983).

    Google Scholar 

  8. D. Eidus, “The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium,” J. Differ. Equat., 84, 309–318 (1990).

    Google Scholar 

  9. V. A. Galaktionov and J. R. King, “On behaviour of blow-up interfaces for an inhomogeneous filtration equation,” IMA J. Appl. Math., 57, 53–77 (1996).

    Google Scholar 

  10. V. A. Galaktionov and J. L. Vazquez, “Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach,” J. Funct. Anal., 100, 435–462 (1991).

    Google Scholar 

  11. V. A. Galaktionov and J. L. Vazquez, “Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison,” Comm. Partial Differ. Equat., 19, 1075–1106 (1994).

    Google Scholar 

  12. V. A. Galaktionov and J. L. Vazquez, “Continuation of blow-up solutions of nonlinear heat equations in several space dimensions,” Comm. Pure Appl. Math., 50, 1–67 (1997).

    Google Scholar 

  13. M. Guedda, D. Hilhorst, and M. A. Peletier, “Disappearing interfaces in nonlinear diffusion,” Adv. Math. Sci. Appl., Tokyo, 7,No. 2, 695–710 (1997).

    Google Scholar 

  14. A. M. Il'in, A. S. Kalashnikov, and O. A. Oleinik, “Linear equations of the second order of parabolic type,” Russian Math. Surveys, 17, 1–144 (1962).

    Google Scholar 

  15. D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys., 61,No. 1, 41–73 (1989).

    Google Scholar 

  16. D. D. Joseph and L. Preziosi, “Addendum to the paper 'Heat waves',” Rev. Mod. Phys., 62,No. 2, 375–391 (1990).

    Google Scholar 

  17. A. S. Kalashnikov, “Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations,” Russian Math. Surveys, 42, 169–222 (1987).

    Google Scholar 

  18. A. S. Kalashnikov, “The Cauchy problem in a class of growing functions for equations of unsteady filtration type,” Vestnik Mos. Univ., Ser. I, Mat., Mekh. 6, 17–27 (1963).

    Google Scholar 

  19. S. Kamin (Kamenomostskaya), “The asymptotic behaviour of the solutions of the filtration equation,” Israel J. Math., 14, 76–87 (1973).

    Google Scholar 

  20. S. Kamin, “Heat propagation in an inhomogeneous medium,” Progress in Partial Differential Equations: The Metz Surveys, 4, 229–237 (1996); Pitman Res. Notes Math., 345, Longman, Harlow.

    Google Scholar 

  21. S. Kamin and R. Kersner, “Disappearance of interfaces in finite time,” Meccanica, 28, 117–120 (1993).

    Google Scholar 

  22. S. Kamin, L. A. Peletier, and J. L. Vazquez, “A nonlinear diffusion equation with unbounded initial data,” in: Nonlinear Diffusion Equations and Their Equilibrium States, 3, 7, in the series “Progress in Nonlinear Differential Equations and Applications,” Birkhäuser Verlag, Boston (1992), pp. 243–263.

    Google Scholar 

  23. S. Kamin and P. Rosenau, “Propagation of thermal waves in an inhomogeneous medium,” Comm. Pure Appl. Math., 33, 831–852 (1981).

    Google Scholar 

  24. S. Kamin and P. Rosenau, “Nonlinear diffusion in finite mass medium,” Comm. Pure Appl. Math., 35, 113–127 (1982).

    Google Scholar 

  25. S. Kamin and J. L. Vazquez, “Asymptotic behaviour of solutions of the porous medium equation with changing sign,” SIAM J. Math. Anal., 22, 34–45 (1991).

    Google Scholar 

  26. O. A. Oleinik, “On the equations of unsteady filtration type,” Dokl. Akad. Nauk SSSR, 113, 1210–1213 (1957).

    Google Scholar 

  27. O. A. Oleinik and T. D. Ventcel, “The first boundary value problem and the Cauchy problem for quasilinear parabolic equations,” Mat. Sb., 41,No. 1, 105–128 (1957).

    Google Scholar 

  28. O. A. Oleinik, A. S. Kalashnikov, and Y.-I. Chzou, “The Cauchy problem and boundary problems for equations of the type of unsteady filtration,” Izv. Akad. Nauk SSSR, Ser. Mat., 22,No. 5, 667–704 (1958).

    Google Scholar 

  29. R. E. Pattle, “Diffusion from an instantaneous point source with concentration dependent coefficient,” Quart. J. Mech. Appl. Math., 12, 407–409 (1959).

    Google Scholar 

  30. M. A. Peletier, “A supersolution for the porous media equation with nonuniform density,” Appl. Math. Lett., 7, 29–32 (1994).

    Google Scholar 

  31. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for ODEs, CRC Press (1995).

  32. Ph. Rosenau, “Reaction and concentration dependent diffusion model,” Phys. Rev. Lett., to appear.

  33. I. Rubinstein and L. Rubinstein, Partial Differential Equations in Classical Mathematical Physics, Cambridge University Press, Cambridge (1993).

    Google Scholar 

  34. J. L. Vazquez, “Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium,” Trans. Amer. Math. Soc., 277, 507–527 (1983).

    Google Scholar 

  35. J. L. Vazquez, “New selfsimilar solutions of the porous medium equation and the theory of solutions with changing sign,” J. Nonlinear Analysis, 15,No. 10, 931–942 (1990).

    Google Scholar 

  36. J. L. Vazquez, “An introduction to the mathematical theory of the porous medium equation,” in: Shape Optimization and Free Boundaries, M. C. Delfour (ed.), Mathematical and Physical Sciences, Series C, 380, Kluwer Acad. Publ., Dordrecht-Boston-Leiden (1992), pp. 347–389.

    Google Scholar 

  37. J. L. Vazquez and L. Véron, “Different kinds of selfsimilar solutions of nonlinear parabolic equations,” in: Nonlinear Problems in Applied Mathematics, Angell et al. (eds.), volume in honor of Ivar Stakgold, SIAM, Philadelphia (1996).

    Google Scholar 

  38. L. Véron, “Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach,” Ann. Fac. Sci. Toulouse, 1, 171–200 (1979).

    Google Scholar 

  39. Y. B. Zel'dovich and A. S. Kompaneets, “On the theory of propagation of heat with the heat conductivity depending upon the temperature,” in: Collection in Honour of the Seventieth Birthday of Academician A. F. Ioffe [in Russian], Izdat. AN USSR, Moscow (1950), 61–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galaktionov, V.A., Kamin, S., Kersner, R. et al. Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction. Journal of Mathematical Sciences 120, 1277–1294 (2004). https://doi.org/10.1023/B:JOTH.0000016049.94192.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000016049.94192.aa

Navigation