Skip to main content
Log in

A Probability Approach to the Method of Vanishing Viscosity

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We clarify conditions under which solutions to the Cauchy problem for a general (fully nondiagonal) system of linear and nonlinear parabolic equations admit probability representations. Such representations are also used for constructing and studying solutions to the Cauchy problem for nonlinear hyperbolic systems. Bibliography: 26 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. L. Daletskii, “Functional integrals associated with differential equations and systems” [in Russian], Dokl. Acad. Nauk SSSR, 137 (1966), No 2, 268–271.

    Google Scholar 

  2. Yu. L. Daletskii, “Functional integrals associated with operator evolution equations” [in Russian], Uspekh. Mat. Nauk, 17 (1967), No 5, 3–115.

    Google Scholar 

  3. D. Stroock, “On certain systems of parabolic equations,” Commun. Pure Appl. Math., 23 (1970), 447–457.

    Google Scholar 

  4. M. Freidlin, Functional Integration and Partial Differential Equations, Princeton, Princeton Univ. Press (1985).

    Google Scholar 

  5. Ya. Belopol'skaya and Yu. L. Daletskii, “An investigation of the Cauchy problem for quasilinear parabolic systems using Markov stochastic processes” [in Russian], Izv. Vuzov Ser. Mat., No. 12, 6–17 (1978).

    Google Scholar 

  6. Yu. L. Daletskii and Ya. Belopol'skaya, Stochastic Equations and Differential Geometry, Kluwer Academic, Dordrecht (1990).

    Google Scholar 

  7. W. Woyczynski, Burgers-KPZ Turbulence, Lecture Notes Math., 1700 (1998).

  8. J. Burgers, The Nonlinear Diffusion Equation, Reidel (1974).

  9. E. Hopf, “The partial differential equation u t + uu x = μu xx,” Commun. Pure Appl. Math., 3 (1950), 201–230.

    Google Scholar 

  10. Ya. Belopol'skaya, “Nonlinear equations in the theory of diffusion processes” [in Russian], Zap. Nauchn. Semin. POMI, 278, 15–35, (2001); English transl.: J. Math. Sci.

    Google Scholar 

  11. Ya. Belopol'skaya. Nonlinear PDEs in Diffusion Theory. Preprint, Bonn Univ. (2001), No. 705.

  12. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland (1981).

  13. K. T. Joseph, “A Riemannian problem whose viscosity solution contains δ-measures,” Asympt. Anal., 7 (1993), 105–120.

    Google Scholar 

  14. H. McKean, “A class of Markov processes associated with nonlinear parabolic equations,” Proc. Nat. Acad Sci USA, 59 (1966), No. 6, 1907–1911.

    Google Scholar 

  15. M. I. Freidlin, “Quasilinear parabolic equations and measures in a functional space” [in Russian], Funk. Anal. Primen., 1 (1967), No. 3, 237–240.

    Google Scholar 

  16. Ya. Belopol'skaya and Yu. L. Daletskii, “Markov processes associated with nonlinear parabolic systems” [in Russian], Dokl. Acad. Nauk SSSR, 250 (1980), No 1, 521–524.

    Google Scholar 

  17. Ya. Belopol'skaya, “Quasilinear parabolic equations with small parameter in a Hilbert space,” Amer. Math. Soc. Translations 2, 164 (1995), 43–73.

    Google Scholar 

  18. Ya. Belopol'skaya, “Burgers equation on a Hilbert manifold and the motion of incompressible fluid,” Methods Funct. Anal. Topology, 5 (1999), No. 4, 15–27.

    Google Scholar 

  19. Ya. Belopol'skaya, “A probability approach to the solution of nonlinear parabolic equations” [in Russian], Probl. Mat. Anal., 13, 21–35 (1992); English transl.: J. Math. Sci.

    Google Scholar 

  20. Ya. Belopol'skaya, Smooth Diffusion Measures and Their Transformations (2), Preprint, Bonn Univ. (2000), No. 628.

  21. Ya. Belopol'skaya, “Smooth diffusion measures and their transformations” [in Russian], Zap. Nauchn. Semin. POMI, 260, 87–105, (1999); English transl.: J. Math. Sci.

    Google Scholar 

  22. Ya. Belopol'skaya, “Nonlinear transformations of evolution families generated by diffusion processes” [in Russian], Probl. Mat. Anal., 25, 3–28 (2003); English transl.: J. Math. Sci., 114 (2003), No. 5, 1589–1607.

    Google Scholar 

  23. A. G. Kurosh, Higher Algebra Moscow, Mir (1988).

    Google Scholar 

  24. L. C. Evans, Partial Differential Equations, Providence, Am. Math. Soc. (1998).

    Google Scholar 

  25. G. B. Whitham, Linear and Nonlinear Waves, New York, Willey-Interscience Publ. (1974).

    Google Scholar 

  26. B. L. Rozhdestvenskii and N. I. Yanenko, Systems of Quasilinear Equations [in Russian], Moscow, Nauka (1968).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belopol'skaya, Y.I. A Probability Approach to the Method of Vanishing Viscosity. Journal of Mathematical Sciences 120, 1051–1079 (2004). https://doi.org/10.1023/B:JOTH.0000014836.58121.fa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000014836.58121.fa

Keywords

Navigation