Skip to main content
Log in

Fluctuations of Entropy Production in the Isokinetic Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss, using computer simulation, the microscopic definition of entropy production rate in a model of a dissipative system: a sheared fluid in which the kinetic energy is kept constant via a Gaussian thermostat. The total phase space contraction rate is the sum of two statistically independent contributions: the first one is due to the work of the conservative forces, is independent of the driving force and does not vanish at zero drive, making the system nonconservative also in equilibrium. The second is due to the work of the dissipative forces, and is responsible for the average entropy production; the distribution of its fluctuations is found to verify the Fluctuation Relation of Gallavotti and Cohen. The distribution of the fluctuations of the total phase space contraction rate also verify the Fluctuation Relation. It is compared with the same quantity calculated in the isoenergetic ensemble: we find that the two ensembles are equivalent, as conjectured by many authors. Finally, we discuss the implication of our results for experiments trying to verify the validity of the FR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gallavotti, New methods in nonequilibrium gases and fluids, in Proceedings of the Conference Let's Face Chaos Through Nonlinear Dynamics, M. Robnik, ed., Open Systems and Information Dynamics, Vol. 6 (University of Maribor, 1999); on-line at http:// ipparco.roma1.infn.it.

  2. G. Gallavotti, Nonequilibrium thermodynamics?, preprint cond-mat/0301172.

  3. D. J. Evans and G. P. Morris, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  4. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady states, Phys. Rev. Lett. 71:2401(1993).

    Google Scholar 

  5. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74:2694(1995).

    Google Scholar 

  6. G. Gallavotti, Extension of Onsager's reciprocity to large fields and the chaotic hypothesis, Phys. Rev. Lett. 77:4334(1996); G. Gallavotti, Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem, J. Stat. Phys. 84:899(1996).

    Google Scholar 

  7. F. Bonetto, G. Gallavotti, and P. L. Garrido, Chaotic principle: An experimental test, Physica D 105:226(1997).

    Google Scholar 

  8. F. Bonetto, N. I. Chernov, and J. L. Lebowitz, (Global and local) fluctuations of phase-space contraction in deterministic stationary non-equilibrium, Chaos 8:823(1998).

    Google Scholar 

  9. J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen. 31:3719(1998).

    Google Scholar 

  10. J. L. Lebowitz and H. Spohn, A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys. 95:333(1999).

    Google Scholar 

  11. L. Biferale, D. Pierotti, and A. Vulpiani, Time-reversible dynamical systems for turbulence, J. Phys. A: Math. Gen. 31:21(1998).

    Google Scholar 

  12. G. Gallavotti and F. Perroni, An experimental test of the local fluctuation theorem in chains of weakly interacting Anosov systems, preprint chao-dyn/9909007.

  13. S. Ciliberto and C. Laroche, An experimental verification of the Gallavotti–Cohen fluctuation theorem, J. Phys. IV 8:215(1998).

    Google Scholar 

  14. W. I. Goldburg, Y. Y. Goldschmidt, and H. Kellay, Fluctuation and dissipation in liquid crystal electroconvection, Phys. Rev. Lett. 87:245502(2001).

    Google Scholar 

  15. K. Feitosa and N. Menon, A fluidized granular medium as an instance of the fluctuation theorem, preprint cond-mat/0308212.

  16. D. J. Evans and S. Sarman, Equivalence of thermostatted nonlinear responses, Phys. Rev. E 48:65(1993)

    Google Scholar 

  17. Z. S. She and E. Jackson, Constrained Euler system for Navier–Stokes turbulence, Phys. Rev. Lett. 70:1255(1993)

    Google Scholar 

  18. E. G. D. Cohen and L. Rondoni, Note on phase space contraction and entropy production in thermostatted Hamiltonian systems, Chaos 8:357(1998).

    Google Scholar 

  19. D. Ruelle, A remark on the equivalence of isokinetic and isoenergetic thermostats in the thermodynamic limit, J. Stat. Phys. 100:757(2000).

    Google Scholar 

  20. G. Gallavotti, Statistical Mechanics. A Short Treatise (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  21. G. Gallavotti, Foundation of Fluid Dynamics (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  22. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, 1987).

  23. G. Parisi, Off-equilibrium fluctuation dissipation relation in binary mixtures, Phys. Rev. Lett. 79:3660(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamponi, F., Ruocco, G. & Angelani, L. Fluctuations of Entropy Production in the Isokinetic Ensemble. Journal of Statistical Physics 115, 1655–1668 (2004). https://doi.org/10.1023/B:JOSS.0000028072.34588.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000028072.34588.32

Navigation