Abstract
We examine critically the issue of phase transitions in one-dimensional systems with short range interactions. We begin by reviewing in detail the most famous non-existence result, namely van Hove's theorem, emphasizing its hypothesis and subsequently its limited range of applicability. To further underscore this point, we present several examples of one-dimensional short ranged models that exhibit true, thermodynamic phase transitions, with increasing level of complexity and closeness to reality. Thus having made clear the necessity for a result broader than van Hove's theorem, we set out to prove such a general non-existence theorem, widening largely the class of models known to be free of phase transitions. The theorem is presented from a rigorous mathematical point of view although examples of the framework corresponding to usual physical systems are given along the way. We close the paper with a discussion in more physical terms of the implications of this non-existence theorem.
This is a preview of subscription content, access via your institution.
REFERENCES
- 1.
E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press, London, 1966).
- 2.
J. Bernasconi and T. Schneider, Physics in One Dimension (Springer, Berlin, 1981).
- 3.
D. H. Dunlap, H. L. Wu, and P. Phillips, Phys. Rev. Lett. 65:88(1990).
- 4.
F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81:3735(1998).
- 5.
P. Carpena, P. Bernaola-Galvá;n, P. C. Ivanov, and H. E. Stanley, Nature 418:955(2002).
- 6.
P. Carpena, P. Bernaola-Galvá;n, P. C. Ivanov, and H. E. Stanley, Nature 421:764(2003).
- 7.
M. R. Evans, Brazilian J. Phys. 30:42(2000).
- 8.
L. van Hove, Physica 16:137(1950) (reprinted in ref. 1, p. 28).
- 9.
D. Ruelle, Statistical Mechanics: Rigorous Results (Addison-Wesley, Reading, 1989).
- 10.
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, New York, 1980).
- 11.
C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, 2000).
- 12.
R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).
- 13.
G. Forgacs, J. M. Luck, T. M. Nieuwenhuizen, and H. Orland, Phys. Rev. Lett. 57:2184(1986); B. Derrida, V. Hakim, and J. Vannimenus, J. Stat. Phys. 66:1189(1992); G. Giguliarelli and A. L. Stella, Phys. Rev. E 53:5035(1996); P. S. Swain and A. O. Parry, J. Phys. A 30:4597(1997); T. W. Burkhardt, J. Phys. A 31:L549(1998).
- 14.
D. Ruelle, Comm. Math. Phys. 9:267(1968).
- 15.
G. Rushbrooke and H. Ursell, Proc. Cambridge Phil. Soc. 44:263(1948).
- 16.
F. J. Dyson, Comm. Math. Phys. 12:91(1969).
- 17.
J. Fröhlich and T. Spencer, Comm. Math. Phys. 81:87(1982).
- 18.
C. Kittel, Am. J. Phys. 37:917(1969).
- 19.
J. F. Nagle, Am. J. Phys. 36:1114(1968).
- 20.
H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).
- 21.
K. Huang, Statistical Mechanics (Wiley, Singapore, 1987).
- 22.
M. Plischke and B. Bergersen, Equilibrium Statistical Physics (World Scientific, Singapore, 1994).
- 23.
T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995).
- 24.
S. T. Chui and J. D. Weeks, Phys. Rev. B 23:2438(1981).
- 25.
J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992).
- 26.
T. W. Burkhardt, J. Phys. A 14:L63(1981).
- 27.
T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47:R44(1993); T. Dauxois and M. Peyrard, Phys. Rev. E 51:4027(1995).
- 28.
N. Theodorakopoulos, T. Dauxois, and M. Peyrard, Phys. Rev. Lett. 85:6(2000); T. Dauxois, N. Theodorakopoulos, and M. Peyrard, J. Stat. Phys. 107:869(2002).
- 29.
N. Theodorakopoulos, http://arxiv.org/abs/cond-mat/0210188 (2002).
- 30.
A. Campa and A. Giansanti, Phys. Rev. E 68:3585(1998).
- 31.
P. Meyer-Nieberg, Banach Lattices (Springer, Berlin, 1991).
- 32.
A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin, 1997).
- 33.
N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993).
- 34.
J. A. Cuesta and A. Sá;nchez, J. Phys. A 35:2373(2002).
- 35.
T. Tsuzuki and K. Sasaki, Progr. Theoret. Phys. Supp. 94:73(1988).
- 36.
S. Ares, J. A. Cuesta, A. Sá;nchez, and R. Toral, Phys. Rev. E 67:046108(2003).
- 37.
M. V. Simkin and V. P. Roychowdhury, Complex Sys. 14:269(2003).
- 38.
C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems: An Introduction (Cambridge University, Cambridge, 1993), Chapter 21.
- 39.
D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978).
- 40.
V. Baladi, Positive Transfer Operators and Decay of Correlations (World Scientific, Singapore, 2000).
Author information
Affiliations
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s10955-009-9862-6.
Rights and permissions
About this article
Cite this article
Cuesta, J.A., Sánchez, A. General Non-Existence Theorem for Phase Transitions in One-Dimensional Systems with Short Range Interactions, and Physical Examples of Such Transitions. Journal of Statistical Physics 115, 869–893 (2004). https://doi.org/10.1023/B:JOSS.0000022373.63640.4e
Issue Date:
- phase transitions
- one-dimensional systems
- short-range interactions
- transfer operators
- rigorous results