Skip to main content
Log in

Loose, Flat Knots in Collapsed Polymers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider single ring polymers which are confined on a plane but maintain a fixed three-dimensional knotted topology. The equilibrium statistics of such systems is studied on the basis of a model on square lattice in which the configurations are represented by N-step polygons with a number of self-intersections restricted to the minimum compatible with the topology. This allows to define the size, s, of the flat knots and to study their localization properties. Due to the presence of both excluded volume and attractive interactions, the model undergoes a theta transition. Accurate Monte Carlo results show that, while in the high temperature swollen regime both prime and composite knot components are localized (〈s N N t, with t=0), in the low temperature, compact phase they are fully delocalized (t=1). Right at the theta transition weak localization prevails (t=0.44±0.02). Part of the results can be interpreted by taking into account a dominance of figure eight shapes for the coarse grained knotted polymer configurations, and by applying the scaling theory of polymer networks of fixed topology. In particular t=3/7 can be conjectured as an exact exponent characterizing the weak knot localization at the theta point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Y. Shaw and J. C. Wang, Knotting of a DNA chain during ring closure, Science 260:533–536 (1993).

    Google Scholar 

  2. V. L. Rybenkov, N. R. Cozzarelli, and A. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Nat. Acad. Sci. USA 90:5307–11 (1993).

    Google Scholar 

  3. S. A. Wasserman and N. R. Cozzarelli, Biochemical topology: applications to DNA recombination and replication, Science 232:951–960 (1986).

    Google Scholar 

  4. A. D. Bates and A. Maxwell, DNA Topology (IRL Press, 1993).

  5. F. B. Dean, A. Stasiak, T. Koller, and N. R. Cozzarelli, Duplex DNA knots produced by Escherichia coli topoisomerase I, J. Biol. Chem. 260:4795–4983 (1985).

    Google Scholar 

  6. C. D. Lima, J. C. Wang, and A. Mondragon, Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I, Nature 367:138–146 (1994).

    Google Scholar 

  7. S. A. Wasserman and N. R. Cozzarelli, Supercoiled DNA-directed knotting by T4 topoisomerase, J. Biol. Chem. 266, 20567–20573 (1991).

    Google Scholar 

  8. M. A. Krasnow, A. Stasiak, S. J. Spengler, F. Dean, T. Koller, and N. R. Cozzarelli, Determination of the absolute handedness of knots and catenanes of DNA, Nature 304:559–560 (1983).

    Google Scholar 

  9. N. J. Crisona, et al., Processive Recombination by Wild-Type Gin and an Enhancer-Independent Mutant: insight into the Mechanisms of Recombination Selectivity and Strand exchange, J. Mol. Biol. 243:437–457 (1994).

    Google Scholar 

  10. S. A. Wasserman, J. M. Dungan, and N. R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229:171–174 (1985).

    Google Scholar 

  11. A. Stasiak, V. Katritch, J. Bednar, D. Michoud, and J. Dubochet, Electrophoretic mobility of DNA knots, Nature 384:122(1996).

    Google Scholar 

  12. H. L. Frisch and E. Wasserman, Chemical Topology, J. Am. Chem. Soc. 83:3789–3795 (1968).

    Google Scholar 

  13. M. Delbruck, Mathematical Problems in the Biological Sciences (AMS, Providence, RI, 1962), p. 55.

    Google Scholar 

  14. D. W. Sumners and S. G. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21:1689–1694 (1988).

    Google Scholar 

  15. N. Pippenger, Knots in random walks, Disc. Appl. Math. 25:273–278 (1989).

    Google Scholar 

  16. K. Koniaris and M. Muthukumar, Knottedness in ring polymers, Phys. Rev. Lett. 66:2211–2214 (1991).

    Google Scholar 

  17. P.-G. de Gennes, Tight knots, Macromolecules 17:703–704 (1984).

    Google Scholar 

  18. T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon, The manipulation of single biomolecules, Physics Today 54:46–51 (2001).

    Google Scholar 

  19. S. F. Edwards, Statistical mechanics with topological constraints: I, Proc. Phys. Soc. 91:513–519 (1967).

    Google Scholar 

  20. A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamenetskii, and V. V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Sov. Phys. JETP 39:1059–1063 (1974).

    Google Scholar 

  21. M. D. Frank-Kamenetskii, A. V. Lukashin, and A. V. Vologodskii, Statistical mechanics and topology of polymer chains, Nature 258:398–402 (1975).

    Google Scholar 

  22. J. P. J. Michels and F. W. Wiegel, On the topology of a polymer ring, Proc. Roy. Soc. A 403:269–284 (1986).

    Google Scholar 

  23. S. F. Edwards, Statistical mechanics with topological constraints: II, J. Phys. A 1:15–28 (1968).

    Google Scholar 

  24. T. Deguchi and K. Tsurusaki, Topology of closed random polygons, J. Phys. Soc. Japan 62:1411–1414 (1993).

    Google Scholar 

  25. E. Orlandini, E. J. Janse van Rensburg, M. C. Tesi, D. W. Sumners, and S. G. Whittington, Topology and Geometry of Biopolymers (IMA Volumes in Mathematics and its Applications), 82:21–37 (1996).

    Google Scholar 

  26. A. Yu. Grosberg and S. Nechaev, Algebraic invariants of knots and disordered Potts model, J. Phys. A 25:4659–4672 (1992).

    Google Scholar 

  27. A. Yu. Grosberg, Critical exponents for random knots, Phys. Rev. Lett. 85:3858–3861 (2000).

    Google Scholar 

  28. A. Yu. Grosberg, Self-avoiding knots, preprint, cond-mat/0207427 (2002).

  29. E. J. Janse van Rensburg and S. G. Whittington, The knot probability in lattice polygons, J. Phys. A 23:3573–3590 (1990).

    Google Scholar 

  30. E. J. Janse van Rensburg and S. G. Whittington, The dimensions of knotted polygons, J. Phys. A 24:3935–3948 (1991).

    Google Scholar 

  31. E. Orlandini, M. C. Tesi, E. J. Janse van Rensburg, and S. G. Whittington, Asymptotics of knotted lattice polygons, J. Phys. A 31:5953–5967 (1998).

    Google Scholar 

  32. S. R. Quake, Topological effects of knots in polymers, Phys. Rev. Lett. 73:3317–3320 (1994).

    Google Scholar 

  33. E. Orlandini, M. C. Tesi, E. J. Janse van Rensburg, and S. G. Whittington, Entropic exponents of lattice polygons with specified knot type, J. Phys. A 29:L299-L303 (1996).

    Google Scholar 

  34. B. Maier and J. O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined in Two Dimensions, Phys. Rev. Lett. 82:1911–1914 (1999).

    Google Scholar 

  35. E. Ben-Naim, Z. A. Daya, P. Vorobieff, and R. E. Ecke, Knots and random walks in vibrated granular chains, Phys. Rev. Lett. 86:1411–1416 (2001).

    Google Scholar 

  36. M. B. Hastings, Z. A. Daya, E. Ben-Naim, and R. E. Ecke, Entropic tightening of vibrated chains, Phys. Rev. E 66:R25102-R25105 (2002).

    Google Scholar 

  37. K. Murasugi, Knot theory and its applications (Birkhäuser, Boston, 1996).

    Google Scholar 

  38. E. Guitter and E. Orlandini, Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers, J. Phys. A 32:1359–1385 (1999).

    Google Scholar 

  39. R. Metzler, A. Hanke, P. G. Dommersnes, Y. Kantor, and M. Kardar, Equilibrium shapes of flat knots, Phys. Rev. Lett. 88:188101(2002).

    Google Scholar 

  40. B. Duplantier, Statistical mechanics of polymer networks of any topology, J. Stat. Phys. 54:581–680 (1989).

    Google Scholar 

  41. K. Ohno and K. Binder, Theory of star polymers and general polymer networks in bulk and semi-infinite good solvents, J. Phys. (Paris) 49:1329–1352 (1988).

    Google Scholar 

  42. Y. Kafri, D. Mukamel, and L. Peliti, Why is the DNA denaturation transition first order?, Phys. Rev. Lett. 85:4988–4991 (2000).

    Google Scholar 

  43. V. Katrich, W. K. Olson, A. Vologodskii, J. Dubochet, and A. Stasiak, Tightness of random knotting, Phys. Rev. E 61:5545–5549 (2000).

    Google Scholar 

  44. O. Farago, Y. Kantor, and M. Kardar, Pulling knotted polymers, Europhys. Lett. 60:53–59 (2002).

    Google Scholar 

  45. C. Vanderzande, Lattice models of polymers (Cambridge University Press, 1998).

  46. F. Takusagawa and K. Kamitori, A real knot in protein, Am. Chem. Soc. 118:8945–8946 (1996).

    Google Scholar 

  47. W. R. Taylor, A deeply knotted protein structure and how it might fold, Nature 406:916–919 (2000).

    Google Scholar 

  48. V. S. Pande and D. S. Rokhsar, Is the molten globule a third phase of proteins?, Proc. Natl. Acad. Sci. USA 95:1490–1494 (1998).

    Google Scholar 

  49. P. G. Dommersnes, Y. Kantor, and M. Kardar, Knots in charged polymers, Phys. Rev. E 66:031802(2002).

    Google Scholar 

  50. M. Baiesi, E. Carlon, and A. L. Stella, Scaling in DNA unzipping models: denaturated loops and end segments as branches of a block copolymer network, Phys. Rev. E 66:021804(2002).

    Google Scholar 

  51. E. Orlandini, A. L. Stella, and C. Vanderzande, The polymer theta-point as a knot delocalization transition, cond-mat/0211259 (2002); E. Orlandini, A. L. Stella, and C. Vanderzande, The polymer theta-point as a knot delocalization transitionPhys. Rev. E 68:031804(2003).

    Google Scholar 

  52. B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49:1062–1065 (1982).

    Google Scholar 

  53. M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, and S. G. Whittington, Monte Carlo study of the interacting self-avoiding walk model, J. Stat. Phys. 82:155–181 (1996).

    Google Scholar 

  54. E. Orlandini, Monte Carlo study of polymer systems by multiple Markov Chain method, IMA Proc. Work. 102:33–57 (1996).

    Google Scholar 

  55. B. Duplantier and H. Saleur, Exact tricritical exponents for polymers at the Θ-point in two dimensions, Phys. Rev. Lett. 59:539–542 (1987).

    Google Scholar 

  56. F. Seno and A. L. Stella, θ point of a linear polymer in 2 dimensions: a renormalisation group analysis of Monte Carlo enumerations, J. Phys. 49:739–748 (1988).

    Google Scholar 

  57. H.-P. Hsu and P. Grassberger, Collapsed 2-dimensional polymers on a cylinder, J. Phys. A 35:L759-L766 (2002).

    Google Scholar 

  58. L. Schäfer, C. von Ferber, U. Lehr, and B. Duplantier, Renormalization of polymer networks and stars, Nucl. Phys. B 374:473–495 (1992).

    Google Scholar 

  59. B. Duplantier and H. Saleur, Exact critical properties of two-dimensional dense self-avoiding walks, Nucl. Phys. B 290:291–326 (1987).

    Google Scholar 

  60. E. J. Janse van Rensburg, D. W. Sumners, E. Wassermann, and S. G. Whittington, Entanglement complexity of self-avoiding walks, J. Phys. A 25:6557–6566 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlandini, E., Stella, A.L. & vanderzande, C. Loose, Flat Knots in Collapsed Polymers. Journal of Statistical Physics 115, 681–700 (2004). https://doi.org/10.1023/B:JOSS.0000019820.70798.ed

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019820.70798.ed

Navigation