Skip to main content
Log in

Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stoichiometric protonation constants (logβ) of aniline derivatives were determined potentiometrically over a wide range of solvent composition (0–0.74 mole fraction of ethanol). To explain the variation of the logβ values obtained over the whole composition range studied, the quasi-lattice quasi-chemical theory of preferential solvation was applied. The results were discussed in terms of macroscopic properties of the mixed solvent and different microscopic parameters, such as the Kamlet–Taft solvatochromic parameters to identify the solvent characteristics affecting the logβ values. Kamlet and Taft's general equation was reduced to two terms by using both multiple-linear regression analysis and combined factor analysis and target factor analysis in these mixtures: the independent term and the hydrogen-bond donating ability α (HBD), which is a solvatochromic parameter. Hammett's reaction constant for the protonation of anilines has been obtained for all the solvent mixtures and correlates well with α (HBD) of the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. W. Muth, L. Ortoleva-Donnelly, and J. A. McCammon, Science 289, 947 (2000).

    Google Scholar 

  2. K. C. Gross and P. G. Seybold, J. Org. Chem. 66, 6919 (2001).

    Google Scholar 

  3. F. Rived, M. Rosés, and E. Bosch, Anal. Chim. Acta 374, 309 (1998).

    Google Scholar 

  4. A. I. Biggs and R. A. Robinson, J. Am. Chem. Soc. 388 (1961).

  5. B. Gutbezahl and E. Grunwald, J. Am. Chem. Soc. 75, 559 (1953).

    Google Scholar 

  6. M. S. K. Niazi and J. Mollin, Bull. Chem. Soc. Jpn. 60, 2605 (1987).

    Google Scholar 

  7. C. L. De Ligny, H. J. H. Kreutzer, and G. F. Visserman, Rec. Trav. Chim. 85, 5 (1966).

    Google Scholar 

  8. A. L. De and A. K. Atta, Can. J. Chem. 63, 2245 (1985).

    Google Scholar 

  9. W. J. Gelsema, C. L. Deligny, and G. F. Visserman, Rec. Trav. Chim. 84, 1129 (1965).

    Google Scholar 

  10. D. Eustace and E. Grunwald, J. Am. Chem. Soc. 96, 7171 (1974).

    Google Scholar 

  11. R. G. Bates, J. Electroanal. Chem. 29, 6 (1971).

    Google Scholar 

  12. K. Hagemark, J. Phys. Chem. 72, 2316 (1968).

    Google Scholar 

  13. Y. Marcus, J. Chem. Soc. Faraday Trans. I 84 1465 (1988).

    Google Scholar 

  14. C. Reichardt, Chem. Rev. 94 2319 (1994).

    Google Scholar 

  15. M. J. Kamlet and R. W. Taft, J. Am. Chem. Soc. 98, 377 (1976).

    Google Scholar 

  16. M. J. Kamlet, J.-L. Abboud, and R. W. Taft, J. Am. Chem. Soc. 99, 6027 (1976).

    Google Scholar 

  17. M. J. Kamlet, J.-L. Abboud, M. H. Abraham, and R. W. Taft, J. Org. Chem. 48, 2877 (1983).

    Google Scholar 

  18. E. R. Malinowski, Factor Analysis in Chemistry, 2nd edn. (Wiley Interscience, New York, 1991).

    Google Scholar 

  19. J. Barbosa, G. Fonrodona, I. Marqués, V. Sanz-Nebot, and I. Toro, Anal. Chim. Acta 351, 397 (1997).

    Google Scholar 

  20. J. Barbosa, G. Fonrodona, I. Marqués, S. Butí, and I. Toro, Trends Anal. Chem. 16, 104 (1997).

    Google Scholar 

  21. B. Hemmateenejad, H. Sharghi, M. Akhond, and M. Shamsipur, J. Solution Chem. 32, 215 (2003).

    Google Scholar 

  22. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry (Prentice-Hall, London, 2000).

    Google Scholar 

  23. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).

    Google Scholar 

  24. L. P. Hammett, Trans. Faraday Soc. 34, 156 (1938).

    Google Scholar 

  25. C. D. Johnson, The Hammett Equation (Cambridge University Press, London, 1973).

    Google Scholar 

  26. C. Hansch, A. Leo, and R. W. Taft, Chem. Rev. 91, 165 (1991).

    Google Scholar 

  27. A. K. Mandal and S. C. Lahiri, J. Indian Chem. Soc. 55, 495 (1978)

    Google Scholar 

  28. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals (Pergamon, New York, 1992).

    Google Scholar 

  29. E. P. Serjeant, Potentiometry and Potentiometric Titrations, Chapter 5: Electrodes for Potentiometry (Wiley, New York, 1984).

    Google Scholar 

  30. F. Köseoğlu, E. Kılıç, E. Canel, and N. Yılmaz, Anal. Chim. Acta 293, 87 (1994).

    Google Scholar 

  31. A. E. Martell and R. J. Motekaitis, The Determination and Use of Stability Constants (VCH, Weinheim, 1988).

    Google Scholar 

  32. K. Dimroth and C. A. Reichardt, Anal. Chem. 215, 344 (1966).

    Google Scholar 

  33. J. H. Park, M. D. Jang, D. S. Kim, and P. W. Carr, J. Chromatog. 513, 107 (1990).

    Google Scholar 

  34. Y. Marcus, Solvent Mixtures, Properties and Selective Solvation (Marcell Dekker, Inc., New York, 2002).

    Google Scholar 

  35. C. Reichardt, In Molecular Interactions, Vol. 3,H. Ratajczak and W. J. Orville-Thomas, eds (Wiley, New York, 1982), p. 262.

    Google Scholar 

  36. A. Gustavo González and D. González-Arjona, Anal. Chim. Acta 312, 295 (1995).

    Google Scholar 

  37. D. Gonzáles-Arjona, J. Antonio Mejías, and A. Gustavo González, Anal. Chim. Acta 295, 119 (1994).

    Google Scholar 

  38. D. Gonzáles-Arjona, J. Antonio Mejías, and A. Gustavo González, Anal. Chim. Acta 297, 473 (1994).

    Google Scholar 

  39. MATLAB, The Math Works, Inc., Natick, MA.

  40. R. E. Kirk and D. F. Othmer, Encyclopedia of Chemical Technology (The Interscience, Inc. (New York, 1969).

    Google Scholar 

  41. A. Albert and E. P. Serjant, Ionization Constants of Acids and Bases (Methuen, London, 1962).

    Google Scholar 

  42. D. D. Perrin, DissociationConstants ofOrganic Bases in Aqueous Solution (Butterworths, London, 1965).

    Google Scholar 

  43. A. L. De, Electrochimia Acta 29, 683 (1984).

    Google Scholar 

  44. A. L. De and A. K. Atta, J. Chem. Eng. Data 32, 117 (1987).

    Google Scholar 

  45. G. T. Castro, O. S. Giordano, and S. E. Blanco, J. Mol. Struct. 626, 167 (2003).

    Google Scholar 

  46. E. Kılıç, F. Köseoğlu, and Ö. Başgut, Anal. Chim. Acta 294, 215 (1994).

    Google Scholar 

  47. J. Barbosa, R. Berges, I. Toro, and V. Sanz-Nebot, Talanta 44, 1271 (1997).

    Google Scholar 

  48. S. Espinosa, E. Bosch, and M. Rosés, Anal. Chim. Acta 454, 157 (2002).

    Google Scholar 

  49. F. Rived, I. Canals, E. Bosch, and M. Rosés, Anal. Chim. Acta 439, 315 (2001).

    Google Scholar 

  50. Z. Pawlak and R. G. Bates, J. Solut. Chem. 5, 325 (1976).

    Google Scholar 

  51. L. Sücha, S. Kortlŷ, Solution Equilibria in Analytical Chemistry (Van Norstrand Reinhold, London, 1972).

    Google Scholar 

  52. N. A. Izmailov and V. N. Izmailova, Zh. Fiz. Khim. 29, 1050 (1955).

    Google Scholar 

  53. A. S. Quist and W. L. Marshall, J. Phys. Chem. 72, 684 (1968).

    Google Scholar 

  54. A. S. Quist and W. L. Marshall, J. Phys. Chem. 72, 1536 (1968).

    Google Scholar 

  55. Y. Marcus, Monatsh. Chem. 132, 1387 (2001).

    Google Scholar 

  56. Y. G. Wu, M. Tabata, and T. Takamuku, J. Solution Chem. 31, 381 (2002).

    Google Scholar 

  57. Y. Marcus and Y. Migron, J. Phys. Chem. 95, 400 (1991).

    Google Scholar 

  58. O. Popovych and A. J. Dill, Anal. Chem. 41, 456 (1969).

    Google Scholar 

  59. A. K. Bhattachayva, D. Sengupta, and S. C. Lahiri, Z. Phys. Chem. Lepzig 265, 372 (1984).

    Google Scholar 

  60. C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000).

    Google Scholar 

  61. N. S. Isaacs, Physical Organic Chemistry (Longman, New York, 1986).

    Google Scholar 

  62. D. D. Perrin, B. Demosey, and E. P. Serjeant, pKa Prediction for Organic Acid and Bases (Chapman and Hall, London, 1981).

    Google Scholar 

  63. R. J. L. Andon, J. D. Cox, and E. F. G. Herington, Trans. Faraday Soc. 50, 918 (1954).

    Google Scholar 

  64. A. J. Hoefnagel, M. A. Hoefnagel, and B. M. Webster, J. Org. Chem. 43, 4723 (1978).

    Google Scholar 

  65. R. Stewart and J. P. O'Donnell, Can. J. Chem. 42, 1681 (1964).

    Google Scholar 

  66. J. Lior, J. Solution Chem. 28, 1 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altun, Y. Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents. Journal of Solution Chemistry 33, 479–497 (2004). https://doi.org/10.1023/B:JOSL.0000037772.55748.a3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000037772.55748.a3

Navigation