Journal of Solution Chemistry

, Volume 33, Issue 2, pp 199–226 | Cite as

Thermodynamic Model for the Solubility of TcO2· xH2O(am) in the Aqueous Tc(IV) – Na+ – Cl – H+ – OH – H2O System

  • Nancy J. Hess
  • Yuanxian Xia
  • Dhanpat Rai
  • Steven D. Conradson


Solubility studies of TcO2· xH2O(am) have been conducted as a function of H+ concentration from 1 × 10− 5 to 6 M HCl and as a function of chloride concentration from 1 × 10− 3 to 5 M NaCl. These experiments were conducted under carefully controlled reducing conditions such that the preponderance of Tc present in solution is in the reduced oxidation state and was determined to be Tc(IV) by XANES analysis. The aqueous species and solid phases were characterized using a combination of techniques including thermodynamic analyses of solubility data, XRD, and XANES, EXAFS, and UV-vis spectroscopies. Chloride was found to significantly affect Tc(IV) concentrations through (1) the formation of Tc(IV) chloro complexes [i.e., TcCl4(aq) and TcCl62 −] and a stable compound [data suggests this compound to be TcCl4(am)] in highly acidic and relatively concentrated chloride solutions, and (2) its interactions with the positively charged hydrolyzed Tc(IV) species in solutions of relatively low acidity and high chloride concentrations. A thermodynamic model was developed that included hitherto unavailable chemical potentials of the Tc(IV)–chloro species and Pitzer ion-interaction parameters for Tc(IV) hydrolyzed species with bulk electrolyte ions used in this study. The thermodynamic model presented in this paper is consistent with the extensive data reported in this study and with the reliable literature data and is applicable to a wide range of H+ and Cl concentrations and ionic strengths.

Solubility TcO2· xH2O(am) thermodynamic model chloride XAS UV-vis spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Schulte and P. Scoppa, Sci. Total Environ. 64, 163(1987).Google Scholar
  2. 2.
    M. J. Rudin, C. Stanton, R. G. Patterson, and R. S. Garcia, National Low-Level Waste Management Program Radionuclide Report Series, Vol. 2, Technetium-99 Idaho National Engineering Laboratory Technical Report DOE/LLW-118 (Idaho Falls, ID, 1992).Google Scholar
  3. 3.
    J. A. Rard, M. H. Rand, G. Anderegg, and H. Wanner, in Chemical Thermodynamics of Technetium, M. C. A. Sandino and E. Osthols, Eds., Chemical Thermodynamics 3 (Elsevier, New York, 1999), 544p.Google Scholar
  4. 4.
    R. E. Meyer, W. D. Arnold, and F. I. Case, Oak Ridge National Laboratories Technical Report ORNL-6503 (Oak Ridge, TN, 1986).Google Scholar
  5. 5.
    R. E. Meyer, W. D. Arnold, F. I. Case, and G. D. O'Kelley, Radiochim. Acta 55, 11(1991).Google Scholar
  6. 6.
    M. Lefort, Bull. Soc. Chim. Fr. pp. 882-884 (1963).Google Scholar
  7. 7.
    A. C. Vikis, F. Garisto, R. J. Lemire, J. Paquette, N. Sagert, P. P. S. Saluja, S. Sunder, and P. Taylor, Proc. Intern. Symp. Uranium Electricity, pp. 2-18 (Saskatoon, SK, 1988).Google Scholar
  8. 8.
    B. Gorsky and H. Koch, J. Inorg. Nuc. Chem. 31, 3565(1969).Google Scholar
  9. 9.
    K. Ben Said, M. Fattahi, Cl. Musikas, R. Revel, and J. Ch. Abbé, Radiochim. Acta 88, 567(2000).Google Scholar
  10. 10.
    D. Rai, A. R. Felmy, S. P. Juracich, and L. Rao, Sandia National Laboratories Technical Report SAND94-1949 (Albuquerque, NM, 1995).Google Scholar
  11. 11.
    D. Rai, A. R. Felmy, and J. L. Ryan, Inorg. Chem. 29, 260, (1990).Google Scholar
  12. 12.
    E. Ianovici, M. Kosinski, P. Lerch, and A. G. Maddock, J. Radioanal. Chem. 64, 315(1981).Google Scholar
  13. 13.
    Y. Kanchiku, Bull. Chem. Soc. Jpn. 42, 2831(1969).Google Scholar
  14. 14.
    W. H. McMaster, N. Kerr del Grande, J. H. Mallett, and J. H. Hubbell, Compilation of X-ray Cross Sections (University of California, Livermore, CA, 1969).Google Scholar
  15. 15.
    A. L. Ankudinov, Ph. D. Thesis, University of Washington, Seattle, WA (1996).Google Scholar
  16. 16.
    J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Amer. Chem. Soc. 113, 5135-5140 (1991).Google Scholar
  17. 17.
    A. Magneli, Acta Crystallogr. 9, 1038(1956).Google Scholar
  18. 18.
    K. Krebs, Z. Anorgan. Allegem. Chem. 380, 146(1971).Google Scholar
  19. 19.
    P. W. Frais and J. L. Locke, Can. J. Chem. 50, 1811(1972).Google Scholar
  20. 20.
    K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300(1973).Google Scholar
  21. 21.
    K. S. Pitzer, in Ion Interaction Approach: Theory and Data Correlation Activity; K. S. Pitzer, Ed. Activity Coefficients in Electrolyte Solutions, 2nd edn. (CRC Press, Boca Raton, FL, 1991).Google Scholar
  22. 22.
    A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771(1986).Google Scholar
  23. 23.
    A. R. Felmy, D. Rai, J. A. Schramke, and J. Ryan, Radiochim. Acta 48, 29(1989).Google Scholar
  24. 24.
    S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Battelle Technical Report PNWD-SA-4436. (Richland, WA, 1997).Google Scholar
  25. 25.
    I. Almahamid, J. C. Bryan, J. J. Bucher, A. K. Burrell, N. M. Edelstein, E. A. Hudson, N. Kaltsoyannis, W. W. Lukens, D. K. Shuh, H. Nitsche, and T. Reich, Inorg. Chem. 34, 193(1995).Google Scholar
  26. 26.
    W. W. Lukens, Jr., J. J. Bucher, N. M. Edelstein, and D. K. Shuh, Environ. Sci. Technol. 36, 1124(2002).Google Scholar
  27. 27.
    C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Nancy J. Hess
    • 1
  • Yuanxian Xia
    • 1
  • Dhanpat Rai
    • 1
  • Steven D. Conradson
    • 2
  1. 1.Environmental Simulations and DynamicsPacific Northwest National LaboratoryRichland
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos Alamos87545

Personalised recommendations