Skip to main content
Log in

Equilibrium and Transport Properties of Sodium n-Octyl Sulfonate Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Measurements of osmotic coefficients, mutual diffusion coefficients, and conductivity were performed on the binary system sodium n-octyl sulfonate (C8SO3Na)–water at 25°C both below and above the micellar composition range. The osmotic coefficient data were obtained through vapor-pressure osmometry, while the Taylor dispersion method was used to measure diffusion coefficients. The mass equilibrium model was applied to this self-aggregating system, taking into account the deviation of the activity coefficients from the Debye–Hückel limiting law by using the Guggenheim corrective terms for mixed electrolyte solutions. The expressions derived from the model fit the experimental osmotic and diffusion coefficient data well, when the same values of aggregation number, fraction of condensed counterions, and equilibrium constant are used. Osmotic coefficients were also used to determine the thermodynamic factor required to compute the solute mobility from diffusion data. Conductivity data were used to test two theoretical models, namely, the Onsager–Fuoss and the Mean Spherical Approximation theories. Both models have been found to yield unsatisfactory fits to our experimental data and some arbitrary terms had to be applied to the theoretical expressions to obtain good agreement between experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Oosawa, J. Polymer Sci. 23, 421(1957).

    Google Scholar 

  2. G. S. Manning, J. Phys. Chem. 51, 924(1969).

    Google Scholar 

  3. R. M. Weinheimer, D. F. Evans, and E. L. J. Cussler, J. Colloid Interface Sci. 80, 357(1981).

    Google Scholar 

  4. D. G. Leaist, Can. J. Chem. 66, 1129(1988).

    Google Scholar 

  5. T. E. Burchfield and E. M. Wooley, J. Phys. Chem. 88, 2149(1984).

    Google Scholar 

  6. J. W. McBain, Trans. Faraday Soc. 9, 99(1913).

    Google Scholar 

  7. S. Puvvada and D. Blanckstein, J. Phys. Chem. 92, 3710(1990).

    Google Scholar 

  8. R. Nagarajan and E. Ruckenstein, Langmuir 7, 2934(1991).

    Google Scholar 

  9. L. Blum, Mol. Physi. 30, 1529(1975).

    Google Scholar 

  10. R. Triolo, J. R Grigera, and L. Blum, J. Phys. Chem. 80, 1858(1976).

    Google Scholar 

  11. L. Blum and J. S. Hoeye, J. Phys. Chem. 81, 1311(1977).

    Google Scholar 

  12. O. Bernard, W. Kunz, P. Turq, and L. Blum, J. Phys. Chem. 96, 3833(1992).

    Google Scholar 

  13. S. Durand-Vidal, P. Turq, and O. Bernard, J. Phys. Chem. 100, 17345(1996).

    Google Scholar 

  14. S. Durand-Vidal, P. Turq, O. Bernard, and C. Treiner, J. Phys. Chem. B 101, 1713(1997).

    Google Scholar 

  15. L. Onsager and R. M. Fuoss, J. Phys. Chem. 36, 2689(1932).

    Google Scholar 

  16. D. E. Burge, J. Phys. Chem. 67, 2590(1963).

    Google Scholar 

  17. J. Barthel, H. J. Gores, C. M. Lohr, and J. J. Seidl, J. Solution Chem. 25, 921(1996).

    Google Scholar 

  18. A. Alizadeh, C. A Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 1, 243(1980).

    Google Scholar 

  19. G. N. Lewis and M. Randall, Thermodynamics, 2nd edn., L. Brewer and K. S. Pitzer, Eds. (McGraw-Hill, New York, 1965).

    Google Scholar 

  20. O. Annunziata, L. Costantino, G. D'Errico, L. Paduano, and V. Vitagliano, J. Colloid Interface Sci. 216, 16(1999).

    Google Scholar 

  21. L. Onsager, Ann. N. Y. Acad. Sci. 46, 241(1945).

    Google Scholar 

  22. V. Vitagliano and P.A. Lyons, J. Amer. Chem. Soc. 78, 1549(1956).

    Google Scholar 

  23. R. Caramazza, Gaz. Chim. Ital. 90, 1839(1960).

    Google Scholar 

  24. D. G. Miller, J. Phys. Chem. 70, 2639(1966).

    Google Scholar 

  25. L. Onsager and R. M. Fuoss, J. Phys. Chem. 36, 2689(1923).

    Google Scholar 

  26. L. Onsager and S. K. Kim, J. Phys. Chem. 61, 215(1957).

    Google Scholar 

  27. H. Falkenhagen, M. Leist, and G. Kelbg, Ann. Phys. Leipz. 11, 51(1952).

    Google Scholar 

  28. E. Pitts, Proc. Roy. Soc. 217A, 43(1953).

    Google Scholar 

  29. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, 3rd edn. (Reinhold, New York, 1958).

    Google Scholar 

  30. H. C. Evans, J. Chem. Soc. Abstr. pp. 579–586 (1956).

  31. R. Zana, J. Colloid Interface Sci. 78, 330(1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortona, O., D'Errico, G., Paduano, L. et al. Equilibrium and Transport Properties of Sodium n-Octyl Sulfonate Aqueous Solutions. Journal of Solution Chemistry 32, 1103–1120 (2003). https://doi.org/10.1023/B:JOSL.0000023924.50409.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000023924.50409.b9

Navigation