Skip to main content
Log in

Solubility of Crystalline Nonelectrolyte Solutes in Organic Solvents: Mathematical Correlation of Acetylsalicylic Acid Solubilities with the Abraham General Solvation Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The Abraham general solvation model is used to calculate the numerical values of the solute descriptors for acetylsalicylic acid from experimental solubilities in organic solvents. The mathematical correlations take the form of

$$\begin{gathered} \log (C_S /C_W ) = c + rR_2 + s\pi _2^H + a\sum \alpha _2^H + b\sum \beta _2^H + vV_x \hfill \\ \log (C_S /C_G ) = c + rR_2 + s\pi _2^H + a\sum \alpha _2^H + b\sum \beta _2^H + l\log L^{(16)} \hfill \\ \end{gathered}$$

where C S and C W refer to the solute solubility in the organic solvent and water, respectively, C G is a gas phase concentration, R 2 is the solute excess molar refraction, V x is McGowan volume of the solute, Σα2 H and Σβ2 H are measures of the solute hydrogen-bond acidity and hydrogen-bond basicity, π2 H denotes the solute dipolarity/polarizability descriptor, and L (16) is the solute gas-phase dimensionless Ostwald partition coefficient into hexadecane at 298 K. The remaining symbols in the above expressions are known solvent coefficients, which have been determined previously for a large number of gas–solvent and water–solvent systems. We estimate R 2 as 0.781 and calculate V x as 1.2879 and then solve a total of 48 equations to yield π2 H = 1.6900, ΣαH 2 = 0.7100, ΣβH 2 = 0.6700, and log L (16) = 6.2789. These descriptors reproduce the 48 observed log (C S /C W ) and log (C S /C G ) values with a standard deviation of only 0.131 log units. The calculated descriptors differ significantly from two earlier sets of values that were deduced from experimental data for the partitioning of acetylsalicylic acid between water and a very limited number of organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Abraham, Chem. Soc. Rev. 23, 73(1993).

    Google Scholar 

  2. M. H. Abraham, G. S. Whiting, W. J. Shuely, and R. M. Doherty, Can. J. Chem. 76, 703(1998).

    Google Scholar 

  3. M. H. Abraham, G. S. Whiting, P. W. Carr, and H. Ouyang, J. Chem. Soc. Perkin Trans. 2, p. 1385(1998).

    Google Scholar 

  4. M. H. Abraham, J. A. Platts, A. Hersey, A. J. Leo, and R. W. Taft, J. Pharm. Sci. 88, 670(1999).

    Google Scholar 

  5. M. H. Abraham, J. Andonian-Haftvan, J. P. Osei-Owusu, P. Sakellariou, J. S. Urieta, M. C. Lopez, and R. Fuchs, J. Chem. Soc. Perkin Trans. 2, p. 299(1993).

    Google Scholar 

  6. M. H. Abraham, F. Martins, R. C. Mitchell, and C. J. Salter, J. Pharm. Sci. 88, 241(1999).

    Google Scholar 

  7. M. H. Abraham, J. Le, and W. E. Acree, Jr., Collect. Czech. Chem. Commun. 64, 1748(1999).

    Google Scholar 

  8. M. H. Abraham, J. Le, W. E. Acree, Jr., and P. W. Carr, J. Phys. Org. Chem. 12, 675(1999).

    Google Scholar 

  9. M. H. Abraham, A. M. Zissimos, and W. E. Acree, Jr., New J. Chem. 27, 1041(2003).

    Google Scholar 

  10. M. H. Abraham, A. M. Zissimos, and W. E. Acree, Jr., Phys. Chem. Chem. Phys. 3, 3732(2001).

    Google Scholar 

  11. M. H. Abraham, C. E. Green, and W. E. Acree, Jr. J. Chem. Soc. Perkin Trans. 2, p. 281(2000).

    Google Scholar 

  12. M. H. Abraham, C. E. Green, W. E. Acree, Jr., C. E. Hernández, and L. E. Roy, J. Chem. Soc. Perkin Trans. 2, p. 2677(1998).

    Google Scholar 

  13. C. E. Green, M. H. Abraham, W. E. Acree, Jr., K. M. De Fina, and T. L. Sharp, Pest Manage. Sci. 56, 1043(2000).

    Google Scholar 

  14. M. H. Abraham, N. Benjelloun-Dakhama, J. M. R. Gola, W. E. Acree, Jr., W. S. Cain, and J. E. Cometto-Muniz, New J. Chem. 24, 825(2000).

    Google Scholar 

  15. W. E. Acree, Jr. and M. H. Abraham, J. Solution Chem. 31, 293(2002).

    Google Scholar 

  16. G. L. Perlovich and A. Bauer-Brandl, A. Pharm. Res. 20, 471(2003).

    Google Scholar 

  17. R. S. Payne, R. C. Rowe, R. J. Roberts, M. H. Charlton, and R. Doherty, J. Comp. Chem. 20, 262(1999).

    Google Scholar 

  18. V. N. Agafonov and N. B. Leonidov, Khim.-Farm. Z. 12, 127(1978).

    Google Scholar 

  19. L. Borka, Acta Pharm. Sueica 9, 115(1972).

    Google Scholar 

  20. M. De Bisschop, J. Pharm. Belg., 25, 330(1970).

    Google Scholar 

  21. M. P. Summers, J. E. Carless, and R. P. Enever, J. Pharm. Pharmacol. 22, 615(1970).

    Google Scholar 

  22. R. Tawashi, J. Pharm. Pharmacol. 21, 701(1969).

    Google Scholar 

  23. R. Tawashi, Science 160, 76(1968).

    Google Scholar 

  24. B. Jerslev and U. Lund, Arch. Pharm. Chem. Sci. Edn. 9, 61(1981).

    Google Scholar 

  25. G. P. Bettinetti, F. Giordan, and G. Giuseppetti, Farmaco Edizione Pratica 30, 244(1975).

    Google Scholar 

  26. F. Jamali, and A. G. Mitchell, Acta Pharm. Suecica 10, 343(1973).

    Google Scholar 

  27. K. Bauer and H. Voege, Pharm. Ind. p. 960(1972).

  28. G. Schwartzman, J. Pharm. Pharmacol. 24, 169(1972).

    Google Scholar 

  29. B. A. Mulley, R. M. Rye, and P. Shaw, J. Pharm. Pharmacol. 23, 902(1971).

    Google Scholar 

  30. R. R. Pfeiffer, J. Pharm. Pharmacol. 23, 75(1971).

    Google Scholar 

  31. S.-L. Lin, J. Pharm. Sci. 56, 1130(1967).

    Google Scholar 

  32. S. L. Cassidy, P. A. Lympany, and J. A. Henry, J. Pharm. Pharmacol. 40, 130(1988).

    Google Scholar 

  33. R. Castro-Carela, C. Rey-Castro, T. Viaremo, and M. E. Sastre de Vicente, J. Chem. Eng. Data 47, 1432(2002).

    Google Scholar 

  34. L. J. Edwards, Trans. Faraday Soc. 47, 1191(1951).

    Google Scholar 

  35. M. H. Abraham and J. Le, J. Pharm. Sci. 88, 868(1999).

    Google Scholar 

  36. A. Apelblat and E. Manzurola, J. Chem. Thermodyn. 31, 85(1999).

    Google Scholar 

  37. D. Y. Hung, G. D. Mellick, R. J. Prankerd, and M. S. Roberts, Inter. J. Pharm. 153, 25(1997).

    Google Scholar 

  38. C. A. S. Bergström, U. Norinder, K. Luthman, and P. Artusson, Pharm. Res. 19, 182(2002).

    Google Scholar 

  39. SciFinder Scholar, American Chemical Society, listed value was calculated using Advanced Chemistry Development (ACD) Software Solaris V4.67, 1994-2003 ACD.

  40. A. M. Zissimos, M. H. Abraham, M. Barker, K. J. Box, and K. Y. Tam, J. Chem. Soc., Perkin Trans. 2, p. 470(2002).

    Google Scholar 

  41. Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Boutina, G. Beck, B. Sherborne, I. Cooper, and J. A. Platts, J. Pharm. Sci. 90, 749(2001).

    Google Scholar 

  42. M. H. Abraham, G. S. Whiting, R. M. Doherty, and W. J. Shuely, J. Chem. Soc. Perkin Trans. 2, p. 1451(1990).

    Google Scholar 

  43. M. H. Abraham and J. C. McGowan, Chromatographia 23, 243(1987).

    Google Scholar 

  44. J. A. Platts, M. H. Abraham, Y. H. Zhao, A. Hersey, L. Ijaz, and D. Butina, Eur. J. Med Chem. 36, 719(2001).

    Google Scholar 

  45. S. Pinsuwan, A. Li, and S. H. Yalkowsky, J. Chem. Eng. Data 40, 623(1995).

    Google Scholar 

  46. A. Leo, C. Hansch, and D. Elkins, Chem. Rev. 71, 525(1971).

    Google Scholar 

  47. A. Berthod, Y. I. Han, and D. W. Armstrong, J. Liquid Chromatogr. 11, 1441(1988).

    Google Scholar 

  48. V. Kuban, Anal. Chim. Acta 248, 493(1991).

    Google Scholar 

  49. A. M. Zissimos, M. H. Abraham, C. M. Du, K. Valko, C. Bevan, D. Reynolds, J. Wood, and K. Y. Tam, J. Chem. Soc. Perkin Trans. 2, p. 2001(2002).

    Google Scholar 

  50. M. I. La Rotonda, G. Amato, F. Barbato, C. Silipo, and A. Vittorla, Quant. Struct. Activity Related 2, 168(1983).

    Google Scholar 

  51. T. Baczek and R. Kaliszan, J. Chromatogr. A 962, 41(2002).

    Google Scholar 

  52. A. F. Diaz and D. L. Drogos, ACS Symp. Ser. 799 (Oxygenates in Gasoline), pp. 138–152 (2002).

    Google Scholar 

  53. W. T. Wing, Pharm. J. 177, 158(1956).

    Google Scholar 

  54. M. H. Abraham, H. S. Chadha, and R. C. Mitchell, J. Pharm. Sci. 83, 1257(1994).

    Google Scholar 

  55. M. H. Abraham, H. S. Chadha, F. Martins, R. C. Mitchell, and M. W. Bradbury, Pest. Sci. 55, 78(1999).

    Google Scholar 

  56. M. H. Abraham, F. Martins, and R. C. Mitchell, J. Pharm. Pharmacol. 49, 858(1997).

    Google Scholar 

  57. M. H. Abraham, R. Kumarsingh, J. E. Cometto-Muniz, W. S. Cain, M. Roses, E. Bosch, and M. L. Diaz, J. Chem. Soc. Perkin Trans. 2, p. 2405(1998).

    Google Scholar 

  58. M. H. Abraham, R. Kumarsingh, J. E. Cometto-Muniz, and W. S. Cain, Arch. Toxicol. 72, 227(1998).

    Google Scholar 

  59. M. H. Abraham, J. Andonian-Haftvan, J. E. Cometto-Muniz, and W. S. Cain, Fundam. Appl. Toxicol. 31, 71(1996).

    Google Scholar 

  60. M. H. Abraham, R. Kumarsingh, J. E. Cometto-Muniz, and W. S. Cain, Toxicol. In Vitro, 12, 403(1998).

    Google Scholar 

  61. M. H. Abraham and C. Rafols, J. Chem Soc. Perkin Trans. 2, p. 1843(1995).

    Google Scholar 

  62. J. A. Platts and M. H. Abraham, Environ. Sci. Technol. 34, 318(2000).

    Google Scholar 

  63. M. H. Abraham, Y. H. Zhao, J. Le, A. Hersey, C. N. Luscombe, D. P. Reynolds, G. Beck, B. Sherborne, and I. Cooper, Eur. J. Med. Chem. 37, 595(2002).

    Google Scholar 

  64. S. K. Poole, K. Patel, K. Dehring, H. Workmann, and J. Dong, J. Chromatogr. B 793, 265(2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlton, A.K., Daniels, C.R., Acree, W.E. et al. Solubility of Crystalline Nonelectrolyte Solutes in Organic Solvents: Mathematical Correlation of Acetylsalicylic Acid Solubilities with the Abraham General Solvation Model. Journal of Solution Chemistry 32, 1087–1102 (2003). https://doi.org/10.1023/B:JOSL.0000023923.12017.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSL.0000023923.12017.a8

Navigation