Abstract
Isosaccharinate (ISA−), a degradation product of cellulose codisposed in low-level nuclear wastes, is expected to be one of the dominant complexing ligands for radionuclides, especially tetravalent actinides. This paper presents a comprehensive thermodynamic model for isosaccharinate reactions with Ca(II) and Np(IV). The model is valid for a wide range of pH values (∼2–14), ISA− concentrations (ranging up to 0.1 m), and ionic strengths (ranging up to 6.54 m), and is based on (1) NMR investigations of HISA(aq) (α-D-isosaccharinic acid) and ISL(aq) [dehydration product of HISA(aq)], and the solubility of Ca(ISA)2(c) as a function of pH and concentrations of Ca and ISA−; (2) NpO2(am) solubility in a wide range of pH values (∼2–14) and total ISA concentrations of 0.0016 and 0.008 m and at fixed pH values of approximately 5 and 12 with total ISA concentrations ranging from 0.0001 to 0.1 m; and (3) solvent extraction of Np-ISA solutions, containing fixed NaClO4 concentrations ranging from 0.103 to 6.54 m and at fixed pC H+ values ranging from 1.5 to 1.9, with dibenzoylmethane. Pitzer's ion-interaction approach was used to interpret the data. The different aqueous species required to explain these data included HISA(aq), ISL(aq), Ca(ISA)+, Np(OH)3(ISA)(aq), Np(OH)3(ISA)2 −, Np(OH)4(ISA)−, and Np(OH)4(ISA)2 2−. The values of equilibrium constants for reactions involving these species and determined from these data provided close agreements between the observed and predicted concentrations in all of the systems investigated in this study and those reported previously.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
B. F. Greenfield, A. D. Moreton, M. W. Spindler, S. J. Williams, and D. R. Woodwark, Mat. Res. Soc. Symp. Proc. 257, 299(1992).
B. F. Greenfield, M. H. Hurdus, N. J. Pilkington, M. W. Spindler, and S. J. Williams, Mat. Res. Soc. Symp. Proc. 333, 705(1994).
B. F. Greenfield, C. M. Linklater, A. D. Moreton, M. W. Spindler, and S. J. Williams, in Actinide Processing: Methods and, Materials, B. Misra and W. A. Averill, eds. (Mineral, Metals, and Materials Society, 1994), pp. 289-303.
B. F. Greenfield, G. J. Holton, M. H. Hurdus, N. O'Kelley, N. J. Pilkington, A. Rosevear, M. W. Spindler, and S. J. Williams, Mat. Res. Soc. Symp. Proc. 353, 1151(1995).
A. D. Moreton, Mat. Res. Soc. Symp. Proc. 294, 753(1993).
M. A. Glaus, A. Laube, S. Stallone, and L. R. Van Loon, Mat. Res. Soc. Symp. Proc. 506, 977(1998).
M. A. Glaus, L. R. Van Loon, S. Achatz, A. Chodura, and K. Fischer, Anal. Chim. Acta 398, 111(1999).
E. Wieland, J. Tits, P. Spieler, and J. P. Dobler, Mat. Res. Soc. Symp. Proc. 506, 573(1998).
X. Bourbon and P. Toulhoat, Radiochim. Acta 74, 315(1996).
L. R. Van Loon, M. A. Glaus, A. Laube, and S. Stallone, Radiochim. Acta 86, 83(1999).
K. Vercammen, M. A. Glaus, and L. R. Van Loon, Radiochim. Acta 84, 221(1999).
K. Vercammen, M. A. Glaus, and L. R. Van Loon, Radiochim. Acta 89, 393(2001).
R. L. Whistler, M. L. Wolfrom, and J. N. BeMiller, Methods in Carbohydrate Chemistry (Academic Press, New York, 1963).
D. Rai, L. F. Rao, and Y. Xia, J. Solution Chem. 27, 1109(1998).
D. Rai, L. F. Rao, and D. A. Moore, Radiochim. Acta 83, 9(1998).
H. M. Cho, D. Rai, N. J. Hess, Y. Xia, and L. Rao, J. Solution Chem., 32, 691(2003).
L. R. Van Loon, M. A. Glaus, and K. Vercammen, Acta Chem. Scand. 53, 235(1999).
K. Vercammen, M. A. Glaus, and L. R. Van Loon, Acta Chem. Scand. 53, 241(1999).
D. Rai and J. L. Ryan, Inorg. Chem. 24, 247(1985).
J. A. Schramke, D. Rai, R. W. Fulton, and G. R. Choppin, J. Radioanal. Nucl. Chem. 130, 333(1989).
Y. Xia, L. Rao, D. Rai, and A. R. Felmy, Radiochim. Acta 86, 33(1999).
D. Rai, A. R. Felmy, S. P. Juracich, and L. Rao, Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na2SO4 Electrolytes, SAND94-1949 (Sandia National Laboratory, Alburquerque, New Mexico, 1995).
M. S. Caceci and G. R. Choppin, Radiochim. Acta 33, 101(1983).
K. S. Pitzer, J. Phys. Chem. 77, 268(1973).
K. S. Pitzer, Ion Interaction Approach: Theory and Data Correlation (CRC Press, Boca Raton, FL 1991), Chap. 3.
S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT, PNWD-SA-4436 (Pacific Northwest National Laboratory, Richland, Washington, 1997).
D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, and M. Yui, Radiochim. Acta 84, 159(1999).
D. Rai, A. R. Felmy, S. M. Sterner, D. A. Moore, M. J. Mason, and C. F. Novak, Radiochim. Acta 79, 239(1997).
D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86, 89(1999).
A. R. Felmy, D. Rai, and M. J. Mason, Radiochim. Acta 55, 177(1991).
A. R. Felmy, D. Rai, S. M. Sterner, M. J. Mason, N. J. Hess, and S. D. Conradson, J. Solution Chem. 26, 233(1997).
C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).
D. Rai, L. Rao, H. T. Weger, A. R. Felmy, G. R. Choppin, and M. Yui, Thermodynamic Data for Predicting Concentration of Th(IV), U(IV), Np(IV) and Pu(IV) in Geologic Environments, JNC TH8400 99-009 (Japan Nuclear Cycle Development Institute, Tokai Works, Japan, 1999).
D. Rai, A. R. Felmy, and J. L. Ryan, Inorg. Chem. 29, 260(1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rai, D., Hess, N.J., Xia, Y. et al. Comprehensive Thermodynamic Model Applicable to Highly Acidic to Basic Conditions for Isosaccharinate Reactions with Ca(II) and Np(IV). Journal of Solution Chemistry 32, 665–689 (2003). https://doi.org/10.1023/B:JOSL.0000002988.99769.cb
Issue Date:
DOI: https://doi.org/10.1023/B:JOSL.0000002988.99769.cb