Skip to main content
Log in

On Self-Protecting Singlets in Cuprate Superconductors

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The basal area (Cu–Cu grid) of the cuprate superconductors not only tends to shrink on hole doping, as expected from single-electron quantum chemistry, but exhibits also an electronically incompressible “hump” around optimum doping n opt ≃ 0.16. The hump collapses near critical doping n crit≃0.19. We analyze the origin of the hump in terms of a classical liquid of interacting incompressible particles in a container with antiferromagnetic walls. Oxygen holes interacting with the wall form singlets, protect themselves against other holes by an incompressible “spin fence,” and thus interact also with the lattice. Occupation of the CuO2 lattice with holes must therefore follow a non-double-occupant constraint also for the oxygen cage enclosing the copper hole. Closest packing of self-protecting singlets is found to occur around critical doping; closest packing of paired self-protecting singlets around optimum doping. These singlet states are bosonic, but are not magnetic polarons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Kaldis, in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr., L. Eyring, and M. Maple, eds. (North-Holland, Amsterdam, 2001), Vol. 31.

    Google Scholar 

  2. P. G. Radaelli, D. G. H. A. W. Mitchell, B. A. Hunter, J. L. Wagner, B. Dabrowski, K. G. Vandervoort, H. K. Viswanathan, and J. D. Joergensen, Phys. Rev. B 49 4163 (1994).

    Google Scholar 

  3. A. Fukuoka, A. Tokiwa-Yamamoto, M. Itoh, R. Usami, S. Adachi, and K. Tanabe, Phys. Rev. B 55 6612 (1997).

    Google Scholar 

  4. G. Böttger, I. Mangelschots, E. Kaldis, P. Fischer, C. Krüger, and F. Fauth, J. Phys. Condens. Matter 8 8889 (1996).

    Google Scholar 

  5. Q. Huang, J. W. Lynn, Q. Xiong, and C. W. Chu, Phys. Rev. B 52 462 (1995).

    Google Scholar 

  6. J. D. Joergensen, O. Chmaissem, J. L. Wagner, W. R. Jensen, B. Dabrowski, D. G. Hinks, and J. F. Mitchell, Physica C 282–287 97 (1997).

    Google Scholar 

  7. E. Kaldis, J. Röhler, E. Liarokapis, N. Poulakis, K. Conder, and P. Loeffen, Phys. Rev. Lett. 79 4894 (1997), cond-mat/9707196.

    Google Scholar 

  8. J. Röhler, in Concepts in Electron Correlation, V. Zlatic and A. Hewson, eds., (Kluwer, Dordrecht, The Netherlands, 2003), NATO Science Series, II, Vol 110,55. cond-mat/0210560.

    Google Scholar 

  9. T. Böttger and K. Dichtel (2003), private communication.

  10. J. E. Hirsch, Phys. Rev. Lett. 59 228 (1987).

    PubMed  Google Scholar 

  11. F. C. Zhang and T. M. Rice, Phys. Rev. B 37 3759 (1988).

    Google Scholar 

  12. J. R. Schrieffer, X.-G. Weng, and S.-C. Zhang, Phys. Rev. Lett. 60 944 (1988).

    PubMed  Google Scholar 

  13. P. W. Anderson, The Theory of Superconductivity in the High-T c Cuprates, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1997).

    Google Scholar 

  14. K. A. Müller (2003), this conference.

  15. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82 628 (1999).

    Google Scholar 

  16. T. Timusk (2003), this conference.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röhler, J. On Self-Protecting Singlets in Cuprate Superconductors. Journal of Superconductivity 17, 159–165 (2004). https://doi.org/10.1023/B:JOSC.0000011860.19159.2d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000011860.19159.2d

Navigation