Two Pseudogap Behavior in La2−x Sr x CuO4: Thermoelectric Power at High Temperature


Thermoelectric power (TEP) of high-T C superconductors has been investigated in a wide range of temperature (T C < T < 700 K) for La2−x Sr x CuO4. TEP of La2−x Sr x CuO4 shows different temperature dependences in three temperature regions. In the low-temperature region, a positive broad TEP peak is observed near T p, which shifts to lower temperature upon doping. As temperature increases, TEP decreases linearly at intermediate temperature. In the high-temperature region, TEP deviates from the linear temperature dependence at a certain temperature, T h showing a saturation behavior. As the doping concentration increases, the characteristic temperatures, T C, T p, and T h, show systematic changes. In comparison with pseudogap temperature estimated from other experiments, the large pseudogap behavior in TEP at high temperature has been discussed and distinguished from the small pseudogap observed at lower temperature. A possibility of bound pairs formation in the normal state opening the pseudogap at high temperature is discussed briefly. The coexistence of bound pairs and the normal independent carriers for T C < T < Th could be the origin of the intrinsic inhomogeneity.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greg, Thermoelectric Power of Metals (Plenum Press, New York, 1976).

    Google Scholar 

  2. 2.

    H. Kontani, J. Phys. Soc. Jpn. 70 2840 (2001).

    Google Scholar 

  3. 3.

    A. Peralia, M. Sindel, and G. Kotliar, Eur. Phys. J. B 24 487 (2001).

    Google Scholar 

  4. 4.

    H. Y. Hwang, B. Batlogg, H. Takagi, H. L. Kao, J. Kwo, R. J. Cava, and J. J. Krajewski, Phys. Rev. Lett. 72 2636 (1994).

    PubMed  Google Scholar 

  5. 5.

    H. Takagi, B. Battlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck Jr., Phys. Rev. Lett. 69 2975 (1992); B. Battlogg, H. Y. Hwang, H. Takagi, R. J. Cava, H. L. Kao, and J. Kwo, Physica C 235–240 130 (1994).

    PubMed  Google Scholar 

  6. 6.

    J. B. Mandal, A. N. Das, and B. Ghosh, J. Phys. Condens. Matter 8 3047 (1996).

    Google Scholar 

  7. 7.

    T. Takemura, T. Kitajima, T. Sugaya, and I. Terasaki, J. Phys. Condens. Matter 12 6199 (2000).

    Google Scholar 

  8. 8.

    X. Zhao, X. Sun, L. Wang, W. Wu, and X.-G. Li, J. Phys. Condens. Matter 13 4303 (2001).

    Google Scholar 

  9. 9.

    A. Yamamoto, W.-Z. Hu, and S. Tajima, Phys. Rev. B 63 024504 (2000).

    Google Scholar 

  10. 10.

    J. R. Cooper, H. Minami, V. W. Wittorff, D. Babic, and J. W. Loram, Physica C 341–348 (2000).

  11. 11.

    T. Timusk and B. Statt, Rep. Rrog. Phys. 62 61 (1999), and the references therein.

    Google Scholar 

  12. 12.

    T. Takahashi, T. Sato, T. Yokoya, T. Kamiyama, Y. Naitoh, T. Mochiku, K. Yamada, E. Endoh, and K. Kadowaki, J. Phys. Chem. Solids 62 41 (2001).

    Google Scholar 

  13. 13.

    T. Sato, T. Yokoya, Y. Naitoh, T. Takahashi, K. Yamada, and Y. Endoh, Phys. Rev. Lett. 83 2254 (1999).

    Google Scholar 

  14. 14.

    For a review, J. C. Campuzano, M. R. Norman, and M. Randeria, condmat/0209476 (2002), and the references therein.

  15. 15.

    M. Oda, T. Matsuzaki, N. Momono, and M. Ido, Physica C 341–348, 847 (2000).

    Google Scholar 

  16. 16.

    T. Nishikawa, J. Takeda, and M. Sato, J. Phys. Soc. Jpn. 63 1441 (1994); J. Takeda, K. Fujiwara, M. Sato, T. Nishioka, and M. Kontani, J. Phys. Soc. Jpn. 65 2946 (1996).

    Google Scholar 

  17. 17.

    F. Devaux, A. Manthiram, and J. B. Goodenough, Phys. Rev. B 41, 8723 (1990); J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B 47 5275 (1993).

    Google Scholar 

  18. 18.

    E. S. Choi, J. S. Brooks, J. S. Qualls, and Y. S. Song, Rev. Sci. Instrum. 72 2392 (2001).

    Google Scholar 

  19. 19.

    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 51 3104 (1995).

    Google Scholar 

  20. 20.

    K. Kamagai, K. Kawano, H. Kagami, G. Suzuki, Y. Matsuda, I. Watanabe, K. Nishiyama, and K. Magamine, Physica C 235–240 1715 (1994).

    Google Scholar 

  21. 21.

    N. Kakinuma, Y. Ono, and Y. Koike, Phys. Rev. B 59 1491 (1999).

    Google Scholar 

  22. 22.

    M. V. Elizarova and V. E. Gasumyants, Phys. Rev. B 62 5989 (2000).

    Google Scholar 

  23. 23.

    T. Palckowski and M. Matusiak, Phys. Rev. B 60 14872 (1999).

    Google Scholar 

  24. 24.

    S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46 14928 (1992).

    Google Scholar 

  25. 25.

    J.-S. Zhou, H. Chen, and J. B. Goodenough, Phys. Rev. B 50 4168 (1994).

    Google Scholar 

  26. 26.

    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 54 12488 (1996).

    Google Scholar 

  27. 27.

    J. L. Tallon and J. W. Loram, Physica C 349 53 (2001).

    Google Scholar 

  28. 28.

    A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 65 094504 (2002).

    Google Scholar 

  29. 29.

    J. R. Cooper and J. W. Loram, J. Phys. IV (Fr.) 6 2237 (1996).

    Google Scholar 

  30. 30.

    Y. Nakamura and S. Uchida, Phys. Rev. B 47 8369 (1993).

    Google Scholar 

  31. 31.

    D. M. Newns, C. C. Tsuei, R. P. Huebener, P. J. M. van Bentum, P. C. Pattnaik, and C. C. Chi, Phys. Rev. Lett. 73 1695 (1994).

    PubMed  Google Scholar 

  32. 32.

    G. C. McIntosh and A. B. Kaiser, Phys. Rev. B 54 12569 (1996).

    Google Scholar 

  33. 33.

    J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, S. S. P. Parkin, D. T. Keane, S. J. LaPlaca, P. M. Horn, and G. A. Held, Phys. Rev. B 40 8872 (1989).

    Google Scholar 

  34. 34.

    Y. Yanase, J. Phys. Soc. Jpn. 71 278 (2002).

    Google Scholar 

  35. 35.

    H. Kontani, Phys. Rev. Lett. 89 237003 (2002).

    PubMed  Google Scholar 

  36. 36.

    J. B. Goodenough, Europhys. Lett. 57 550 (2002).

    Google Scholar 

  37. 37.

    D. Pavuna, M. Abrecht, D. Cloëtta, X. X. Xi, G. Margaritondo, and D. Ariosa, Curr. Appl. Phys. 2 345 (2002).

    Google Scholar 

  38. 38.

    R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82 628 (1999).

    Google Scholar 

  39. 39.

    M. Tachiki, Curr. Appl. Phys. 2, 431 (2002); M. Tachiki, M. Machida, and T. Egami, Phys. Rev. B 67 174506 (2003).

    Google Scholar 

  40. 40.

    S. H. Naqib, J. R. Cooper, J. L. Tallon, and C. Panagopoulos, Physica C 387 365 (2003).

    Google Scholar 

  41. 41.

    A. Kaminski, S. Rosenkranz, H. M. Fretwell, Z. Z. Li, H. Raffy, M. Randeria, M. R. Norman, and J. C. Campuzano, Phys. Rev. Lett. 90 207003 (2003).

    PubMed  Google Scholar 

  42. 42.

    Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, Physica C 185–189 1341 (1991).

    Google Scholar 

  43. 43.

    D. Mihailovic, V. V. Kabanov, and K. A. Müller, Europhys. Lett. 57 254 (2002).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J.S., Kim, B.H., Kim, D.C. et al. Two Pseudogap Behavior in La2−x Sr x CuO4: Thermoelectric Power at High Temperature. Journal of Superconductivity 17, 151–157 (2004).

Download citation

  • thermoelectric power
  • high-T C cuprates
  • pseudogap
  • intrinsic inhomogeneity