Advertisement

Journal of Superconductivity

, Volume 17, Issue 1, pp 151–157 | Cite as

Two Pseudogap Behavior in La2−xSr x CuO4: Thermoelectric Power at High Temperature

  • J. S. Kim
  • B. H. Kim
  • D. C. Kim
  • Y. W. Park
Article

Abstract

Thermoelectric power (TEP) of high-TC superconductors has been investigated in a wide range of temperature (TC < T < 700 K) for La2−xSr x CuO4. TEP of La2−xSr x CuO4 shows different temperature dependences in three temperature regions. In the low-temperature region, a positive broad TEP peak is observed near Tp, which shifts to lower temperature upon doping. As temperature increases, TEP decreases linearly at intermediate temperature. In the high-temperature region, TEP deviates from the linear temperature dependence at a certain temperature, Th showing a saturation behavior. As the doping concentration increases, the characteristic temperatures, TC, Tp, and Th, show systematic changes. In comparison with pseudogap temperature estimated from other experiments, the large pseudogap behavior in TEP at high temperature has been discussed and distinguished from the small pseudogap observed at lower temperature. A possibility of bound pairs formation in the normal state opening the pseudogap at high temperature is discussed briefly. The coexistence of bound pairs and the normal independent carriers for TC < T < Th could be the origin of the intrinsic inhomogeneity.

thermoelectric power high-TC cuprates pseudogap intrinsic inhomogeneity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greg, Thermoelectric Power of Metals (Plenum Press, New York, 1976).Google Scholar
  2. 2.
    H. Kontani, J. Phys. Soc. Jpn. 70 2840 (2001).Google Scholar
  3. 3.
    A. Peralia, M. Sindel, and G. Kotliar, Eur. Phys. J. B 24 487 (2001).Google Scholar
  4. 4.
    H. Y. Hwang, B. Batlogg, H. Takagi, H. L. Kao, J. Kwo, R. J. Cava, and J. J. Krajewski, Phys. Rev. Lett. 72 2636 (1994).PubMedGoogle Scholar
  5. 5.
    H. Takagi, B. Battlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski, and W. F. Peck Jr., Phys. Rev. Lett. 69 2975 (1992); B. Battlogg, H. Y. Hwang, H. Takagi, R. J. Cava, H. L. Kao, and J. Kwo, Physica C 235–240 130 (1994).PubMedGoogle Scholar
  6. 6.
    J. B. Mandal, A. N. Das, and B. Ghosh, J. Phys. Condens. Matter 8 3047 (1996).Google Scholar
  7. 7.
    T. Takemura, T. Kitajima, T. Sugaya, and I. Terasaki, J. Phys. Condens. Matter 12 6199 (2000).Google Scholar
  8. 8.
    X. Zhao, X. Sun, L. Wang, W. Wu, and X.-G. Li, J. Phys. Condens. Matter 13 4303 (2001).Google Scholar
  9. 9.
    A. Yamamoto, W.-Z. Hu, and S. Tajima, Phys. Rev. B 63 024504 (2000).Google Scholar
  10. 10.
    J. R. Cooper, H. Minami, V. W. Wittorff, D. Babic, and J. W. Loram, Physica C 341–348 (2000).Google Scholar
  11. 11.
    T. Timusk and B. Statt, Rep. Rrog. Phys. 62 61 (1999), and the references therein.Google Scholar
  12. 12.
    T. Takahashi, T. Sato, T. Yokoya, T. Kamiyama, Y. Naitoh, T. Mochiku, K. Yamada, E. Endoh, and K. Kadowaki, J. Phys. Chem. Solids 62 41 (2001).Google Scholar
  13. 13.
    T. Sato, T. Yokoya, Y. Naitoh, T. Takahashi, K. Yamada, and Y. Endoh, Phys. Rev. Lett. 83 2254 (1999).Google Scholar
  14. 14.
    For a review, J. C. Campuzano, M. R. Norman, and M. Randeria, condmat/0209476 (2002), and the references therein.Google Scholar
  15. 15.
    M. Oda, T. Matsuzaki, N. Momono, and M. Ido, Physica C 341–348, 847 (2000).Google Scholar
  16. 16.
    T. Nishikawa, J. Takeda, and M. Sato, J. Phys. Soc. Jpn. 63 1441 (1994); J. Takeda, K. Fujiwara, M. Sato, T. Nishioka, and M. Kontani, J. Phys. Soc. Jpn. 65 2946 (1996).Google Scholar
  17. 17.
    F. Devaux, A. Manthiram, and J. B. Goodenough, Phys. Rev. B 41, 8723 (1990); J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B 47 5275 (1993).Google Scholar
  18. 18.
    E. S. Choi, J. S. Brooks, J. S. Qualls, and Y. S. Song, Rev. Sci. Instrum. 72 2392 (2001).Google Scholar
  19. 19.
    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 51 3104 (1995).Google Scholar
  20. 20.
    K. Kamagai, K. Kawano, H. Kagami, G. Suzuki, Y. Matsuda, I. Watanabe, K. Nishiyama, and K. Magamine, Physica C 235–240 1715 (1994).Google Scholar
  21. 21.
    N. Kakinuma, Y. Ono, and Y. Koike, Phys. Rev. B 59 1491 (1999).Google Scholar
  22. 22.
    M. V. Elizarova and V. E. Gasumyants, Phys. Rev. B 62 5989 (2000).Google Scholar
  23. 23.
    T. Palckowski and M. Matusiak, Phys. Rev. B 60 14872 (1999).Google Scholar
  24. 24.
    S. D. Obertelli, J. R. Cooper, and J. L. Tallon, Phys. Rev. B 46 14928 (1992).Google Scholar
  25. 25.
    J.-S. Zhou, H. Chen, and J. B. Goodenough, Phys. Rev. B 50 4168 (1994).Google Scholar
  26. 26.
    J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 54 12488 (1996).Google Scholar
  27. 27.
    J. L. Tallon and J. W. Loram, Physica C 349 53 (2001).Google Scholar
  28. 28.
    A. Ino, C. Kim, M. Nakamura, T. Yoshida, T. Mizokawa, A. Fujimori, Z.-X. Shen, T. Kakeshita, H. Eisaki, and S. Uchida, Phys. Rev. B 65 094504 (2002).Google Scholar
  29. 29.
    J. R. Cooper and J. W. Loram, J. Phys. IV (Fr.) 6 2237 (1996).Google Scholar
  30. 30.
    Y. Nakamura and S. Uchida, Phys. Rev. B 47 8369 (1993).Google Scholar
  31. 31.
    D. M. Newns, C. C. Tsuei, R. P. Huebener, P. J. M. van Bentum, P. C. Pattnaik, and C. C. Chi, Phys. Rev. Lett. 73 1695 (1994).PubMedGoogle Scholar
  32. 32.
    G. C. McIntosh and A. B. Kaiser, Phys. Rev. B 54 12569 (1996).Google Scholar
  33. 33.
    J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, S. S. P. Parkin, D. T. Keane, S. J. LaPlaca, P. M. Horn, and G. A. Held, Phys. Rev. B 40 8872 (1989).Google Scholar
  34. 34.
    Y. Yanase, J. Phys. Soc. Jpn. 71 278 (2002).Google Scholar
  35. 35.
    H. Kontani, Phys. Rev. Lett. 89 237003 (2002).PubMedGoogle Scholar
  36. 36.
    J. B. Goodenough, Europhys. Lett. 57 550 (2002).Google Scholar
  37. 37.
    D. Pavuna, M. Abrecht, D. Cloëtta, X. X. Xi, G. Margaritondo, and D. Ariosa, Curr. Appl. Phys. 2 345 (2002).Google Scholar
  38. 38.
    R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82 628 (1999).Google Scholar
  39. 39.
    M. Tachiki, Curr. Appl. Phys. 2, 431 (2002); M. Tachiki, M. Machida, and T. Egami, Phys. Rev. B 67 174506 (2003).Google Scholar
  40. 40.
    S. H. Naqib, J. R. Cooper, J. L. Tallon, and C. Panagopoulos, Physica C 387 365 (2003).Google Scholar
  41. 41.
    A. Kaminski, S. Rosenkranz, H. M. Fretwell, Z. Z. Li, H. Raffy, M. Randeria, M. R. Norman, and J. C. Campuzano, Phys. Rev. Lett. 90 207003 (2003).PubMedGoogle Scholar
  42. 42.
    Y. S. Song, Y. S. Choi, Y. W. Park, M. S. Jang, and S. K. Han, Physica C 185–189 1341 (1991).Google Scholar
  43. 43.
    D. Mihailovic, V. V. Kabanov, and K. A. Müller, Europhys. Lett. 57 254 (2002).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • J. S. Kim
    • 1
  • B. H. Kim
    • 1
  • D. C. Kim
    • 1
  • Y. W. Park
    • 1
  1. 1.School of Physics and Condensed Matter Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations