Skip to main content
Log in

Percolation, Fractal Behavior, and High-T c Superconductivity

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Hole suppliers like Sr in doped La2CuO4 are mainly randomly distributed. Assuming that the holes are dislocated over a few lattice constants away from the Sr atom, the conducting areas form randomly distributed circles in the CuO2 layer planes. Conductivity and also superconductivity can occur only when these circles touch each other and form percolation clusters. Mobile holes are accompanied by diffusing d-electrons. Their spin direction is no longer localized on distinct places, and antiferromagnetism breaks down. The phase diagram of high-T c superconductors is discussed on the basis of a modified continuum percolation model for which the centers of each circle are located on lattice points. The inhomogeneities due to the random hole distributions lead to broad peaks instead of sharp singularities in the static and dynamic response functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Schneider, J. of Superconductivity 17 41 (2004).

    Google Scholar 

  2. D. Poilblanc and T. M. Rice, Phys. Rev. B 39 9749 (1989).

    Google Scholar 

  3. J. Zaanen and O. Gunnarsson, Phys. Rev. B 40 7391 (1989).

    Google Scholar 

  4. A. Binconi, N. L. Saini, A. Lanzara, M. Missori, T. Rossetti, H. Oyanagi, H. Yamaguchi, K. Oka, and T. Ito, Phys. Rev. Lett. 76 3412 (1996).

    PubMed  Google Scholar 

  5. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature 415 412 (2002).

    PubMed  Google Scholar 

  6. J. C. Phillips, Phys. Rev. Lett. 88 216401 (2002).

    PubMed  Google Scholar 

  7. J. C. Phillips, J. Supercond. In. Novel Magn 15 393 (2002).

    Google Scholar 

  8. D. Mihailovic, V. V. Kabanov, and K. A. Müller, Europhys. Lett. 57 254 (2002).

    Google Scholar 

  9. M. Mali, J. Roos, H. Keller, J. Karpinski, and K. Conder, Phys. Rev. B 65 184518 (2002).

    Google Scholar 

  10. Ch. P. Poole, T. Datta, and H. A. Farach, Copper Oxide Superconductors (Wiley, New York, 1988).

    Google Scholar 

  11. C. Domb, E. Stoll, and T. Schneider, Contemp. Phys. 21 577 (1980).

    Google Scholar 

  12. M. Rosso, J. Phys. A: Math. Gen. 22 L131 (1989).

    Google Scholar 

  13. S. B. Lee and S. Torquato, J. Chem. Phys. 89 6427 (1988).

    Google Scholar 

  14. E. P. Stoll, J. Mod. Phys. C 15 2 (in press 2004).

    Google Scholar 

  15. E. Hückel, Z. Physik 70 204 (1931); E. Hückel, Z. Physik 72 310 (1931); E. Hückel, Z. Physik 76 626 (1932).

    Google Scholar 

  16. R. Zallen, in Proceedings of the 13th IUPAP Conference on Statistical Physics, Vol. 1, D. Cabib, C. G. Kuper, and I. Riess, eds. (Israel Physical Society, 1978), p. 309.

  17. C. Domb, T. Schneider, and E. Stoll, J. Phys. A: Math. Gen. 8 L90 (1975).

    Google Scholar 

  18. J. G. Bednorz and K. A. Müller, Z. Phys. B 64 189 (1986).

    Google Scholar 

  19. Erich Stoll, Max Kolb, and Eric Courtens, Phys. Rev. Lett. 68 2472 (1992).

    PubMed  Google Scholar 

  20. P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn Suppl. 26 11 (1969).

    Google Scholar 

  21. C. M. Fortuin and P. W. Kasteleyn, Physica 57 536 (1972).

    Google Scholar 

  22. M. F. Sykes, M. Glen, and D. S. Gaunt, J. Phys. A: Math. Gen. 7 L105 (1974).

    Google Scholar 

  23. Michael L. Williams and Humphrey J. Maris, Phys. Rev. B 31 4508 (1985).

    Google Scholar 

  24. K. Yakubo and T. Nakayama, Phys. Rev. B 40 517 (1989).

    Google Scholar 

  25. E. Courtens, R. Vacher, and E. Stoll, Physica D 38 41 (1989).

    Google Scholar 

  26. E. T. Gawlinsky and H. E. Stanley, J. Phys. A: Math. Gen. 14 L291 (1981).

    Google Scholar 

  27. J. Hoshen and R. Kopelman, Phys. Rev. B 28 5323 (1983).

    Google Scholar 

  28. E. Stoll, Comp. Phys. Comm. 109 1 (1998).

    Google Scholar 

  29. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  30. E. Stoll and T. Schneider, J. Phys. A: Math. Gen. 9 L67 (1976).

    Google Scholar 

  31. Helen Au-Yang and Michael E. Fisher, Phys. Rev. B 11 3469 (1975).

    Google Scholar 

  32. G. Grinstein and A. Luther, Phys. Rev. B 13 1329 (1976).

    Google Scholar 

  33. Arthur E. Ferdinand and Michael E. Fisher, Phys. Rev. 185 832 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, E.P. Percolation, Fractal Behavior, and High-T c Superconductivity. Journal of Superconductivity 17, 79–84 (2004). https://doi.org/10.1023/B:JOSC.0000011845.48045.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000011845.48045.aa

Navigation