Skip to main content
Log in

Evolution of the Electronic Structure of Y-Bi-2212 from the Antiferromagnetic to the Superconducting Regime

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The phase diagram of the cuprate superconductors at low doping and low temperatures in the non-superconducting state is dominated by magnetic correlations. When increasing the hole concentration in the CuO2-planes from zero an antiferromagnetic (AF) insulating phase is followed for hole concentrations greater than approximately 0.08 by the superconducting phase. For the range of doping in between the situation is less clear and several models exist. For Bi2Sr2Y x Ca1−xCu2O8 in the range of Y-concentrations 0.9 < x < 0.0 the evolution of the electronic structure starting from the AF phase at x = 0.9, which in this respect can be regarded as the parent compound of the superconducting phase, and its gradual development into the superconducting range can be studied on one system. In this series the CuO2-planes are kept embedded in a nearly identical environment for each hole concentration. Especially the results from the AF phase deviate from former reports attained mainly from oxychlorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Dürr, S. Legner, R. Hayn, S. V. Borisenko, Z. Hu, A. Theresiak, M. Knupfer, M. S. Golden, J. Fink, S. Haffner, F. Ronning, Z.-X. Shen, H. Eisaki, S. Uchida, C. Janowitz, R. Müller, R. L. Johnson, K. Rossnagel, G. Reichardt, Phys. Rev. B 63 014505 (2000) and references therein.

    Google Scholar 

  2. T. Tohyama and S. Maekawa, Supercond. Sci. Technol. 13 R17 (2001).

    Google Scholar 

  3. C. Janowitz, R. Müller, T. Plake, A. Müller, A. Krapt, H. Dwelk, and R. Manzke, Physica B 259 1134 (1999).

    Google Scholar 

  4. C. Janowitz, R. Müller, T. Plake, Th. Böker, and R. Manzke J. Electr. Spectr. Relat. Phen. 105 43 (1999).

    Google Scholar 

  5. K. Roβnagel, L. Kipp, M. Skibowski, and S. Harm, Nucl. Instrum. Methods Phys. Res. A 467 1485 (2001).

    Google Scholar 

  6. D. S. Marshall, D. S. Dessan, A. G. Loeser, C. H. Park, A. Y. Matsnnra, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spices, Z. X. Shen, Phys. Rev. Lett. 76 4841 (1996); A. G. Loeser, Z. X. Shen, D. S. Dessan, D. S. Marshall, C. H. Park, P. Fournier, A. Kapitulnik, Science 273 3235 (1996).

    PubMed  Google Scholar 

  7. P. Aebi, J. Osterwalder, P. Schwaller, and L. Schlapbach, Phys. Rev. Lett. 72 17 (1994).

    PubMed  Google Scholar 

  8. B. O. Wells, Z. X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Geven, and R. J. Birgenean, Phys. Rev. Lett. 74 6 (1995).

    PubMed  Google Scholar 

  9. V. Gavrichkov, A. Borisov, and S. G. Ovchinnikov, Phys. Rev. B 64 235124 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janowitz, C., Seidel, U., Unger, RS. et al. Evolution of the Electronic Structure of Y-Bi-2212 from the Antiferromagnetic to the Superconducting Regime. Journal of Superconductivity 17, 49–52 (2004). https://doi.org/10.1023/B:JOSC.0000011839.86643.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000011839.86643.9f

Navigation