Skip to main content
Log in

Critical Temperatures in Ferromagnetic-Superconducting All-Oxide Superlattices

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Ferromagnetic/superconducting superlattices represent a new class of materials with the simultaneous occurrence of superconductivity and ferromagnetism. The mutual interaction of these antagonistic ordering phenomena is of vital fundamental interest and opens novel possibilities for spin-injection devices. Therefore, we systematically studied YBa2Cu3O7-La2/3Ca1/3MnO3 superlattices of different modulation lengths especially with respect to the reduced phase transition temperatures to ferromagnetism and superconductivity, respectively. Conventional models to explain the reduction of T C and T Curie fail and novel concepts giving rise to a long-range proximity effect have to be introduced. Furthermore, it is suggested that the pseudogap opening of the YBa2Cu3O7 weakens the innerlayer ferromagnetic coupling of the La2/3Ca1/3MnO3 layers, thus contributing to the reduction of T Curie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, Zh. Eksp. Teor. Fiz. 32 202 (1956).

    Google Scholar 

  2. M. B. Maple and Ø. Fischer, Superconductivity in Ternary Compounds II (Topics Current Physics Vol. 34) (Springer, Berlin, 1982).

    Google Scholar 

  3. M. B. Maple, Physica C 341–348 47 (2000).

    Google Scholar 

  4. L. Bauernfeind, W. Widder, and H.-F. Braun, Physica C 254 151 (1995).

    Google Scholar 

  5. I. Felner, Physica C 341–348 25 (2000).

    Google Scholar 

  6. P. Fulde and R. Ferrell, Phys. Rev. 135 A550 (1964).

    Google Scholar 

  7. P. Korevaar, Y. Suzuki, R. Coehoorn, and J. Aarts, Phys. Rev. B 49 441 (1994).

    Google Scholar 

  8. Th. Mühge, N. N. Gafrianov, Yu. V. Goryunov, I. AS. Garifullin, and G. G. Khaliullin, Phys. Rev. B 65 8945 (1997).

    Google Scholar 

  9. A. S. Sidorenko, V. I. Zradkov, A. A. Prepelitsa, C. Helbig, Y. Luo, S. Gsell, M. Schreck, S. Klimm, S. Horn, and R. Tidecks, Ann. Phys. (Leipzing) 12 37 (2003).

    Google Scholar 

  10. H.-U. Habermeier, G. Cristiani, R. K. Kremer, O. Lebedev, and G. van Tendeloo, Physica C 364–365 298 (2001).

    Google Scholar 

  11. H.-U. Habermeier and G. Cristiani, IEEE Trans. on Appl. Supercond. to appear July 2003.

  12. G. Jakob, V. Moschalkov, Y. Bruynseraede, Appl. Phys. Lett 66 2564 (1995).

    Google Scholar 

  13. P. Przyslupski, P. Kolesnik, and S. Dynowska, IEEE Trans. Appl. Supercond. 7 2192 (1997).

    Google Scholar 

  14. H.-U. Habermeier and G. Cristiani, Proc. SPIE 4811 111 (2002).

    Google Scholar 

  15. Z. Sefrioui, M. Varela, V. Peña, D. Arias, C. León, J. Santamaría, J. E. Villegas, J. L. Martínez, W. Saldarriaga, and P. Prieto, Appl. Phys. Lett. 81 4568 (2002).

    Google Scholar 

  16. H.-U. Habermeier and G. Cristiani, J. Supercond. 15 425 (2002).

    Google Scholar 

  17. Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, and J. Santamaría, Phys. Rev. B 67 214511 (2003).

    Google Scholar 

  18. P. Przyslupski, I. Komissarov, P. Dluzewski, J. Pelka, E. Dynowska, and M. Sawicki, Physica C 387 40 (2003).

    Google Scholar 

  19. T. Holden, H.-U. Habermeier, G. Cristiani, A. Golnik, A. Boris, A. Pimenov, J. Humlicek, O. Lebedev, G. van Tendeloo, B. Keimer, and C. Bernhard, accepted Phys. Rev. B 2003—cond. Mat./0303284.

  20. D. Dijkamp and T. Venkatesan, Appl. Phys. Lett. 51 619 (1987).

    Google Scholar 

  21. H.-U. Habermeier, Eur. J. Solid State Inorg. Chem. 28 201 (1991).

    Google Scholar 

  22. J.-M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60 1673 (1997).

    Google Scholar 

  23. I. Bozovic and J. Eckstein, in Physical Properties of High Temperature Superconductors V, D. M. Ginsberg, ed. (World Scientific, Singapore, 1996), pp. 99–207.

    Google Scholar 

  24. H.-U. Habermeier, in Crystal Growth in Thin Solid Films: Control of Epitaxy, M. Guilloux-Viry and A. Perrin, eds. (Research Signpost, Trivandrum, India, 2003), pp. 207–244.

    Google Scholar 

  25. L. Jansen and R. Block, Physica C 252 278 (1998).

    Google Scholar 

  26. D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev. Lett. 65 1160 (1990).

    PubMed  Google Scholar 

  27. C. A. R. Sa de Melo, Phys. Rev. Lett. 79 1933 (1997).

    Google Scholar 

  28. D. H. Lowndes, D. P. Norton, and J. D. Budai, Phys. Rev. Lett. 65 1160 (1990).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habermeier, HU. Critical Temperatures in Ferromagnetic-Superconducting All-Oxide Superlattices. Journal of Superconductivity 17, 15–20 (2004). https://doi.org/10.1023/B:JOSC.0000011833.68855.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000011833.68855.81

Navigation