Skip to main content
Log in

Double Bond Migration Mechanism in Allyl Systems Involving the Hydroxide Ion. 1. Gas-Phase and Born–Onsager Models

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction profile of the 1,3-prototropic rearrangement of propene involving the hydroxide ion was studied by the RHF/6-31+G*, MP2/6-31+G*, and B3LYP/6-31+G* ab initio methods within the framework of the gas-phase and Born–Onsager models (the latter including solvent effects). Propene isomerization in the presence of the hydroxide ion in the gas phase may occur with participation of a base proton with the intermediate formation of a water complex of the allyl ion. The transition state energy of this transformation is lower than the total energy of the starting hydroxide ion and propene and much lower than the sum of the energies of the isolated propenide ion and water molecule. An activation barrier arises when the solvent effect is included in calculation within the framework of the Born–Onsager model; the intermediate complex is much less stable than the complex considered in the gas-phase model. As in the latter, the mechanism of multiple bond migration is energetically preferable to the mechanism involving proton transfer to the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N.M. Vitkovskaya, V.B. Kobychev, E.Yu. Larionova, and B.A. Trofimov, Izv.Akad.Nauk,Ser.Khim., No.1, 35–41 (1999).

    Google Scholar 

  2. V.B. Kobychev, N.M. Vitkovskaya, E. Yu.Larionova,et al.,ibid., No.3, 407–413 (2000).

    Google Scholar 

  3. V.B. Kobychev, N.M. Vitkovskaya, E.Yu. Larionova,and B.A. Trofimov, ibid., 414-419.

  4. A. Klamt and G. Schüürmann, J.Chem.Soc.,Perkin Trans.2, No.5, 799–805 (1993).

    Google Scholar 

  5. J.G. Kirkwood, J.Chem.Phys., 2, 351–361 (1934).

    Google Scholar 

  6. L. Onsager, J.Am.Chem.Soc., 58, 1486–1493 (1936).

    Google Scholar 

  7. M.W. Schmidt, K.K. Baldridge, J.A. Boatz,et al., J.Comput.Chem., 14, 1347 (1993).

    Google Scholar 

  8. M. Szafran, M.M. Karelson, A.R. Katritzky,et al., ibid., No.3,371-377.

  9. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian-98,Revision A.6, Gaussian Inc., Pittsburgh PA (1988).

    Google Scholar 

  10. M.W. Wong, M.J. Frisch,and K.B. Wiberg, J.Am.Chem.Soc., 113, 4776–4782 (1991).

    Google Scholar 

  11. J.H. McCreery, R.E. Christoffersen, and G.G. Hall, ibid., 98, No.23, 7191–7202 (1976).

    Google Scholar 

  12. J. Tomasi, B. Mennucci, and E. Cances, J.Mol.Struct.(Theochem ), 464, 211–226 (1999).

    Google Scholar 

  13. E. Cances and B. Mennucci, J.Chem.Phys., 109, No.1, 249–259 (1998).

    Google Scholar 

  14. E. Cances and B. Mennucci,and J. Tomasi, ibid., 260-266.

  15. J. Tomasi and M. Persico, Chem.Rev.,94, No.7, 2027–2094 (1994).

    Google Scholar 

  16. V. Barone, M. Cossi,and J. Tomasi, J.Chem.Phys., 107, No.8, 3210–3221 (1997).

    Google Scholar 

  17. J.B. Foresman, T.A. Keith, K.B. Wiberg,et al., J.Phys.Chem., 100, 16098 (1996).

    Google Scholar 

  18. P.N. Day, J.H. Jensen, M.S. Gordon,et al., J.Chem.Phys., 105, No.5, 1968–1986 (1996).

    Google Scholar 

  19. V.I. Minkin, B.Ya. Simkin, and R.M. Minyaev, Organic Quantum Chemistry.Reaction Mechanisms [in Russian ], Khimiya, Moscow (1986).

    Google Scholar 

  20. R. Cammi and J. Tomasi, J.Comput.Chem., 16, No.12, 1449–1458 (1995).

    Google Scholar 

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel,et al.,Gaussian-94,Revision C.2, Gaussian Inc., Pittsburgh PA (1995).

    Google Scholar 

  22. C. Gonzales and H.B. Schlegel, J.Chem.Phys., 90, 2154–2161 (1989).

    Google Scholar 

  23. A.D. Becke, ibid., 98, No.7, 5648–5652 (1993).

    Google Scholar 

  24. C. Lee, W. Yang, and R.G. Parr, Phys.Rev.B, 37, No.2, 785–789 (1988).

    Google Scholar 

  25. Geometrical Configurations of Nuclei and Internuclear Distances of Molecules and Ions in the Gas Phase.1.Diatomic Molecules and Ions in the Ground and Excited Electronic States [in Russian ], Standard Publishers, Moscow (1978).

  26. K.S. Krasnov, V.S. Timoshinin, T.G. Danilova, and S.V. Khandozhko, Molecular Constants of Inorganic Compounds [in Russian ], Khimiya,Leningrad (1968).

  27. C.K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, London (1969).

    Google Scholar 

  28. M. Born, Z.Phys., 1, 45 (1920).

    Google Scholar 

  29. L. Serrano-Andrés, M.P. Fülscher,and G. Karlström, Int.J.Quant.Chem., 65, No.2, 167–181 (1997).

    Google Scholar 

  30. O.A. Reutov, I.P. Beletskaya,and K.P. Butin, CH Acids [in Russian ], Nauka, Moscow (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobychev, V.B., Pavlova, N.V. Double Bond Migration Mechanism in Allyl Systems Involving the Hydroxide Ion. 1. Gas-Phase and Born–Onsager Models. Journal of Structural Chemistry 45, 12–19 (2004). https://doi.org/10.1023/B:JORY.0000041496.30502.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORY.0000041496.30502.85

Navigation