Skip to main content
Log in

Conformational Heterogeneity of a Tripeptide in the Solid State and in Solution: Characterization of a γ-Turn Containing Incipient Hairpin in Solution

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A terminally blocked tripeptide Boc-β-Ala-Aib-β-Ala-OMe 1 with noncoded amino acids forms a novel type of hairpin structure containing a γ-turn instead of a conventional β-turn in the central loop region in solution. This new type structural motif was characterized by NMR and restraint molecular dynamics simulation study. In the solid state peptide 1 adopts an extended backbone conformation and self-assembles to form supramolecular β-sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. L. Sibanda and J. M. Thornton, Nature, 316, 170-174 (1985)

    Google Scholar 

  2. B. L. Sibanda, T. L. Blundell, and J. M. Thronton, J. Mol. Biol., 206, 759-777 (1989)

    Google Scholar 

  3. K. Gunasekaran, C. Ramakrishnan, and P. Balaram, Protein Eng., 10, 1131-1141 (1997).

    Google Scholar 

  4. O. B. Ptitsyn, FEBS Lett., 131, 197-201 (1981).

    Google Scholar 

  5. G. E. Schlz, Curr. Opin. Struct. Biol., 6, 485-490 (1996).

    Google Scholar 

  6. E. R. Jarvo, G. T. Copeland, N. Papaioannou, et al., J. Am. Chem. Soc., 121, 11638-11643 (1999).

    Google Scholar 

  7. M. S. Searle, J. Chem. Soc., Perkin Trans. 2, 1011-1020 (2001)

    Google Scholar 

  8. M. S. Searle, D. H. Williams, and L. C. Packman, Nat. Struct. Biol., 2, 999-1006 (1995)

    Google Scholar 

  9. S. R. Griffiths-Jones and M. S. Searle, J. Am. Chem. Soc., 122, 8350-8356 (2000)

    Google Scholar 

  10. E. de Aiba, J. Santoro, M. Rico, et al., Protein Sci., 8, 854-865 (1999)

    Google Scholar 

  11. H. E. Stanger, F. A. Syud, J. F. Espinosa, et al., Proc. Natl. Acad. Sci. USA, 98, 12015-12020 (2001)

    Google Scholar 

  12. T. S. Haque and S. H. Gellman, J. Am. Chem. Soc., 119, 2303/2304 (1997)

    Google Scholar 

  13. H. E. Stanger and S. H. Gellman, J. Am. Chem. Soc., 120, 4236/4237 (1998)

    Google Scholar 

  14. H. L. Schenck and S. H. Gellman, J. Am. Chem. Soc., 120, 4869/4870 (1997)

    Google Scholar 

  15. J. D. Fisk, D. R. Powell, and S. H. Gellman, J. Am. Chem. Soc., 122, 5443-5447 (2000)

    Google Scholar 

  16. S. Krauthauser, L. A. Christianson, D. R. Powell, et al., J. Am. Chem. Soc., 119, 11719/11720 (1997)

    Google Scholar 

  17. R. R. Gardner, G. B. Liang, and S. H. Gellman, J. Am. Chem. Soc., 121, 1806-1816 (1999)

    Google Scholar 

  18. Y. J. Chung, L. A. Christianson, H. E. Stanger, et al., J. Am. Chem. Soc., 120, 10555/10556 (1998)

    Google Scholar 

  19. Y. J. Chung, B. R. Huck, L. A. Christianson, et al., J. Am. Chem. Soc., 122, 3995-4004 (2000)

    Google Scholar 

  20. C. Das, S. Raghothama, and P. Balaram, Chem. Commun., 967/968 (1999)

    Google Scholar 

  21. J. Venkatraman, G. A. Naganagowda, R. Sudha, et al., Chem. Commun., 2660/2661 (2001)

    Google Scholar 

  22. C. Das, S. Raghothama, and P. Balaram, J. Am. Chem. Soc., 120, 5812/5813 (1998)

    Google Scholar 

  23. S. K. Awasthi, S. Raghothama, and P. Balaram, Biochem. Biophys. Res. Commun., 216, 375-381 (1995)

    Google Scholar 

  24. S. C. Shankeramma, S. K. Singh, A. Sathyamurthi, et al., J. Am. Chem. Soc., 121, 5360-5363 (1999).

    Google Scholar 

  25. M. G. Woll, J. R. Lai, I. A. Guzei, et al., J. Am. Chem. Soc., 123, 11077/11078 (2001)

    Google Scholar 

  26. I. L. Karle, H. N. Gopi, and P. Balaram, Proc. Natl. Acad. Sci. USA, 98, 3716-3719 (2001)

    Google Scholar 

  27. I. L. Karle, S. K. Awasthi, and P. Balaram, ibid., 93, 8189-8193 (1996).

    Google Scholar 

  28. A. J. Maynard and M. S. Searle, Chem. Commun., 1297/1298 (1997)

    Google Scholar 

  29. E. de Aiba, M. A. Jimenez, and M. Rico, J. Am. Chem. Soc., 119, 175-183 (1997)

    Google Scholar 

  30. G. J. Sharman and M. S. Searle, Chem. Commun., 1955/1956 (1997)

  31. M. Ramirez-Alvarado, F. J. Blanco, and L. Serrano, Nat. Struct. Biol., 3, 604-611 (1996)

    Google Scholar 

  32. C. S. Colley, S. R. Griffiths-Jones, M. W. George, et al., Chem. Commun., 593/594 (2000).

    Google Scholar 

  33. T. S. Haque, J. C. Little, and S. H. Gellman, J. Am. Chem. Soc., 116, 4105/4106 (1994)

    Google Scholar 

  34. T. S. Haque, J. C. Little, and S. H. Gellman, J. Am. Chem. Soc., 118, 6975-6985 (1996).

    Google Scholar 

  35. R. R. Gardner, G-B. Liang, and S. H. Gellman, J. Am. Chem. Soc., 117, 3280/3281 (1995).

    Google Scholar 

  36. Y. K. Tsang, H. Dioz, N. Graciani, et al., J. Am. Chem. Soc., 116, 3988-4005 (1994)

    Google Scholar 

  37. J. P. Schhieider and J. W. Kelly, Chem. Rev., 95, 2169-2187 (1995).

    Google Scholar 

  38. F. A. Syud, H. E. Stanger, and S. H. Gellman, J. Am. Chem. Soc., 123, 8667-8677 (2001)

    Google Scholar 

  39. A. G. Cochran, N. J. Skelton, and M. A. Starovasnik, Proc. Natl. Acad. Sci. USA., 98, 5578-5583 (2001).

    Google Scholar 

  40. D. Seebach, S. Abele, K. Gademan, et al., Angew. Chem. Int. Ed., 38, 1595-1597 (1999).

    Google Scholar 

  41. E. J. Milner-White, B. M. Ross, R. Ismail, et al., J. Mol. Biol., 204, 777-782 (1988)

    Google Scholar 

  42. E. J. Milner-White, J. Mol. Biol., 216, 385-397 (1990).

    Google Scholar 

  43. S. K. Maji, M. G. Drew, and A. Banerjee, Chem. Commun., 1946/1947 (2001).

  44. M. Bodanszky and A. Bodanszky, The Practice of Peptide Synthesis, Springer, New York (1984).

    Google Scholar 

  45. S. Raghuothama, M. Chaddha, and P. Balaram, J. Phys. Chem., 100, 19666-19671 (1996)

    Google Scholar 

  46. S. K. Maji, R. Banerjee, D. Velmurugan, et al., J. Org. Chem., 67, 633-639 (2002).

    Google Scholar 

  47. G. Zanothi, M. Saviano, G. Saviano, et al., J. Peptide Res., 51, 450-466 (1998)

    Google Scholar 

  48. J. L. Flippen-Anderson and I. L. Karle, Biopolymers, 15, 1081-1092 (1976).

    Google Scholar 

  49. R. Banerjee, S. K. Maji, and A. Banerjee, Acta Cryst., 56C, 1120/1121 (2000).

    Google Scholar 

  50. DISCOVER, Molecular Simulations Inc. San Diego, USA (1999).

  51. From the Brookhaven PDB [F. C. Bernstein, T. F. Koetzle, G. J. Williams, et al., J. Mol. Biol., 112, 535-542 (1977)] we have selected 50 nonhomologous, high resolution (<2. 0 Å) protein crystal structures belonging to different protein structural families and super classes. Secondary structure classification of the different regions of each protein has been determined using the STRIDE [D. Frishman and P. Argos, Proteins. Struct. Funct. Genet. 23 566-579 (1995) ] program. Total 8 structures were obtained fulfilling the selection criteria where two α-strand are flanked by a single amino acid residue forming a γ-turn containing hairpin.

    Google Scholar 

  52. H. Kessler, G. Zimmerman, and H. Forster, Angew. Chem. Int. Ed. Engl., 20, 1053-1055 (1981)

    Google Scholar 

  53. H. Balaram, B. V. Prasad, and P. Balaram, J. Am. Chem. Soc., 105, 4065-4071 (1983).

    Google Scholar 

  54. R. P. Cheng, S. H. Gellman, and W. F. DeGrado, Chem. Rev., 101, 3219-3232 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maji, S.K., Haldar, D., Mukhopadhyay, C. et al. Conformational Heterogeneity of a Tripeptide in the Solid State and in Solution: Characterization of a γ-Turn Containing Incipient Hairpin in Solution. Journal of Structural Chemistry 44, 790–795 (2003). https://doi.org/10.1023/B:JORY.0000029816.31278.7b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORY.0000029816.31278.7b

Navigation