Skip to main content
Log in

Hole Description of Many-Electron Ionization in the Full Configuration Interaction Method and Coupled Cluster Approximation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The full configuration interaction problem for the ionized v-electron shell is formulated in terms of the variational quantities U_k=U_k (1... v ∣ v+1... k+v), which are v-electron functions for the first v indices of electrons and are operators for all others. While operating on the Hartree–Fock determinant of the starting molecule, these Uk generate a complete set of hole–particle excitations of (v+k)hkp type and provide a faithful description of ionization. A system of looped equations has been obtained for Uk. The system is used to seek a matrix representation of the two-electron ionization problem in an approximation equivalent to the EOM-CCD scheme, implementing the equation-of-motion method for two-particle coupled clusters. An approximate Hamiltonian has been derived for valence electrons traveling in an effective field of correlated (CCD method) core electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Kuemmel, K. H. Lehremann, and J. B. Zabolitzky, Phys. Rep., 36, 1-111 (1978).

    Google Scholar 

  2. J. P. Blaisot and G. Ripka, Quantum Theory of Finite Systems, Mass. Inst. Tech., MA (1986).

    Google Scholar 

  3. R. McWeeny and B. T. Pickup, Rep. Progr. Phys., 43, 1065-1144 (1980).

    Google Scholar 

  4. S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).

    Google Scholar 

  5. J. Cizek, J. Chem. Phys., 45 No.11, 4256-4266 (1966).

    Google Scholar 

  6. J. Cizek, Adv. Quant. Chem., 35, 35-89 (1969).

    Google Scholar 

  7. J. Cizek and J. Paldus, Int. J. Quant. Chem., 5, 359-379 (1971).

    Google Scholar 

  8. J. Paldus, Methods in Computational Molecular Physics, S. Wilson and G. Diercksen (eds.), Plenum, New York (1992), pp. 99-194.

    Google Scholar 

  9. J. Paldus, Relativistic and Correlation Effects in Molecules and Solids, G. L. Malli (ed.), NATO ASI Series, Plenum, New York (1992), pp. 1-76.

    Google Scholar 

  10. R. J. Bartlett and J. F. Stanton, Reviews in Computational Chemistry, Vol. 5, K. B. Lipkowitz and D. R. Boyd (eds.), VCH, New York (1994), pp. 65-169.

    Google Scholar 

  11. R. J. Bartlett, Modern Electronic Structure Theory, Advanced Series in Physical Chemistry, Vol. 2, D. R. Yarcony (ed.), World Scientific, Singapore (1995), pp. 1047-1131.

    Google Scholar 

  12. T. D. Crawford and H. F. Schaeffer III, Rev. Comput. Chem., 14, 33-136 (2000).

    Google Scholar 

  13. J. F. Stanton and R. J. Bartlett, J. Chem. Phys., 98 No.9, 7029-7039 (1993).

    Google Scholar 

  14. H. Koch, R. Kobayashi, A. S. de Meras, and P. Jorgensen, ibid., 100 No.6, 4393-4400 (1994).

    Google Scholar 

  15. M. Nooijen and R. J. Bartlett, ibid., 102 No.9, 3629-3647 (1995).

    Google Scholar 

  16. M. Ya. Amusiya, Atomic Photoeffect [in Russian ], Nauka, Moscow (1987).

    Google Scholar 

  17. A. Tarantelli and L. S. Cederbaum, Lect. Notes Chem., 52, 233-256 (1988).

    Google Scholar 

  18. A. V. Luzanov, V. V. Ivanov, and I. V. Boichenko, J. Mol. Struct. (Theochem), 360, 167-174 (1996).

    Google Scholar 

  19. J. L. Bredas, R. R. Chance, and R. Silbey, Phys. Rev., B26, 5843-5857 (1982).

    Google Scholar 

  20. M. Pope and C. Svenberg, Electronic Processes in Organic Crystals [Russian translation ], Vol. 2, Mir, Moscow (1985).

    Google Scholar 

  21. A. V. Luzanov, Teor. Éksp. Khim., 9 No.6, 723-732 (1972).

    Google Scholar 

  22. A. V. Luzanov, Teor. Mat. Fiz., 30 No.3, 361-369 (1977).

    Google Scholar 

  23. A. V. Luzanov, Fiz. Mol., No. 10, 65-96 (1981).

    Google Scholar 

  24. A. V. Luzanov, Multielectron Problem in Quantum Chemistry [in Russian ], Naukova Dumka, Kiev (1987), pp. 53-65.

    Google Scholar 

  25. A. V. Luzanov, Covariant Methods and Electronic Models of Molecules [in Russian ], Folio, Kharkov (1998).

    Google Scholar 

  26. M. M. Mestechkin, Density Matrix Method in Theory of Molecules [in Russian ], Naukova Dumka, Kiev (1977).

    Google Scholar 

  27. N. N. Bogolyubov, Lectures in Quantum Statistics [in Russian ], Radyanska Shkola, Kiev (1949).

    Google Scholar 

  28. N. N. Bogolyubov and N. N. Bogolyubov Jr., Introduction to Quantum Statistical Mechanics [in Russian ], Nauka, Moscow (1984).

    Google Scholar 

  29. E. R. Davidson, Reduced Density Matrices in Quantum Chemistry, Academic Press, New York (1976).

    Google Scholar 

  30. P.-O. Löwdin, Phys. Rev., 97, 1474-1520 (1955).

    Google Scholar 

  31. N. F. Stepanov and V. I. Pupyshev, Quantum Mechanics of Molecules and Quantum Chemistry [in Russian ], Moscow State Univ., Moscow (1991).

    Google Scholar 

  32. A. V. Luzanov, Teor. Éksp. Khim., 11 No.1, 3-9 (1975).

    Google Scholar 

  33. B. T. Pickup and O. Goscinski, Mol. Phys., 26 No.4, 1013-1035 (1973).

    Google Scholar 

  34. G. D. Purvis and Y. Ohrn, J. Chem. Phys., 62 No.6, 2045-2049 (1975).

    Google Scholar 

  35. L. S. Cederbaum, W. Domske, J. Schirmer, et al., ibid., 69 No.4, 1591-1603 (1978).

    Google Scholar 

  36. W. von Niessen, L. S. Cederbaum, and W. Domske, Excited States in Quantum Chemistry, Reidel, Dordrecht (1979), pp. 183-272.

    Google Scholar 

  37. A. V. Luzanov and Yu. F. Pedash, Zh. Strukt. Khim., 27 No.4, 10-17 (1986).

    Google Scholar 

  38. J. F. Stanton and J. Gauss, J. Chem. Phys., 103 No.3, 1064-1076 (1995).

    Google Scholar 

  39. M. Nooijen and J. G. Snijders, ibid., 102 No.4, 1681-1688.

  40. S. Fuzinaga, Molecular Orbital Method [Russian translation ], Mir, Moscow (1983).

    Google Scholar 

  41. R. A. Chiles and C. E. Dykstra, J. Chem. Phys., 74 No.8, 4544-4556 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzanov, A.V. Hole Description of Many-Electron Ionization in the Full Configuration Interaction Method and Coupled Cluster Approximation. Journal of Structural Chemistry 44, 717–727 (2003). https://doi.org/10.1023/B:JORY.0000029806.98575.85

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORY.0000029806.98575.85

Navigation