Skip to main content
Log in

Exciton-Boson Formalism in the Theory of Laser-Excited Semiconductors and Its Application in Coherent Four-Wave-Mixing Spectroscopy

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

By the use of a bosonization transformation and group-theoretical arguments, the Hamiltonian of an electron–hole–photon system in a laser-excited direct two-band semiconductor is transcribed into that of an exciton–photon system with the particle spins rigorously taken into consideration. It is shown that the third-order optical nonlinearities in the spectral region below the band edge have their microscopic origin in two-exciton correlations, which are expressed in terms of the effective exciton–exciton and anharmonic exciton–photon interactions. The dependence of the interparticle interactions on the spin states of quasiparticles is behind the polarization dependence of the semiconductor nonlinear optical response. On the example of the system of heavy hole excitons in quantum wells, grown from compounds with the zinc blende type of symmetry, it is demonstrated that the effective exciton–exciton interaction in two-exciton states with nonzero total spin is repulsive, while in zero-spin states it is attractive, which may result in the biexciton formation. The derived Heisenberg equations of motion for the exciton and biexciton operators form the basis for a theoretical study of the coherent four-wave-mixing in GaAs and ZnSe quantum wells. It is readily apparent from the equations that in different polarization configurations the coherent four-wave-mixing is generated by different ingredients of two-exciton Coulomb correlations: in the co-circular configuration, it is the interexciton repulsion, in the cross-linear configuration, the formation of the biexciton and its coupling to excitons, and in the collinear configuration, both of them jointly. The obtained expressions for the time-resolved and frequency-resolved four-wave-mixing signals adequately describe the main characteristics and various details of wave mixing phenomena, including a biexciton signature in the appropriate polarization configurations. Results of the work clarify the microscopic mechanism of the polarization dependence in coherent four-wave-mixing spectroscopy in semiconductor quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch, in: R. Dingle (ed.), Semiconductors and Semimetals, Academic Press, New York (1987), Vol. 24.

    Google Scholar 

  2. M. Lindberg and S. W. Koch, Phys. Rev. B, 38, 3342 (1988).

    Google Scholar 

  3. W. Sch¨afer, in: F. Henneberger, S. Schmitt-Rink and E. O. G¨ obel (eds.), Optics of Semiconductor Nanostructures, Akademie Verlag, Berlin (1993).

    Google Scholar 

  4. M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Sch¨afer, Phys. Rev. A, 42, 5675 (1990).

    Google Scholar 

  5. R. Eccleston, J. Kuhn, Bennhard, and P. Thomas, Solid State Commun., 86, 93 (1993).

    Google Scholar 

  6. H. Wang, K. B. Ferrio, D. G. Steel, et al., Phys. Rev. Lett., 71, 1261 (1993).

    Google Scholar 

  7. H. H. Yaffe, Y. Prior, J. P. Harbison, and L. T. Florez, J. Opt. Soc. Am. B, 10, 578 (1993).

    Google Scholar 

  8. Y. Z. Hu, R. Binder, S. W. Koch, et al., Phys. Rev. B, 49, 14 382 (1994).

    Google Scholar 

  9. T. Saiki, M. Kuwata-Gonokami, T. Matsusue, and H. Sakaki, Phys. Rev. B, 49, 7817 (1994).

    Google Scholar 

  10. D. J. Lovering, R. T. Phillips, G. J. Denton, and G. W. Smith, Phys. Rev. Lett., 68, 1880 (1992).

    Google Scholar 

  11. E. J. Mayer, G. O. Smith, V. Heuckeroth, et al., Phys. Rev. B, 50, 14 730 (1994)

    Google Scholar 

  12. K. Bott, O. Heller, D. Bennhardt, et al., Phys. Rev. B, 48, 17 418 (1993).

    Google Scholar 

  13. H. P. Wagner, A. Sch¨atz, W. Langbein, et al., Phys. Rev. B, 60, 4454 (1999).

    Google Scholar 

  14. J. Ishi, H. Kunugita, K. Ema, et al., Phys. Rev. B, 63, 073303 (2001).

    Google Scholar 

  15. V. M. Axt and A. Stahl, Z. Phys. B, 93, 175 (1994).

    Google Scholar 

  16. M. Linberg, Y. Z. Hu, R. Binder, and S. W. Koch, Phys. Rev. B, 50, 18060 (1994).

    Google Scholar 

  17. W. Sch¨afer, D. S. Kim, J. Shah, et al., Phys. Rev. B, 53, 16 429 (1996).

    Google Scholar 

  18. E. Hanamura, J. Phys. Soc. Jpn., 29, 50 (1970); 37, 1545 (1974).

    Google Scholar 

  19. T. Usui, Progr. Theor. Phys., 23, 787 (1960).

    Google Scholar 

  20. M. I. Sheboul and W. Ekardt, Phys. Status Solidi B, 73, 165 (1976).

    Google Scholar 

  21. H. Stolz, R. Zimmermann, and G. Ropke, Phys. Status Solidi B, 105, 585 (1981).

    Google Scholar 

  22. T. Hiroshima, Phys. Rev. B, 40, 3862 (1989).

    Google Scholar 

  23. G. Rochat, C. Ciuti, V. Savona, et al., Phys. Rev. B, 61, 13 856 (2000).

    Google Scholar 

  24. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton (1957).

    Google Scholar 

  25. L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Pergamon, New York (1965), Vol. 3.

    Google Scholar 

  26. Hoang Ngoc Cam, Phys. Rev. B, 55, 10 487 (1997).

    Google Scholar 

  27. J. R. Kuklinski and S. Mukamel, Phys. Rev. B, 42, 2959 (1990).

    Google Scholar 

  28. D. S. Kim, J. Shah, T. S. Damen, et al., Phys. Rev. B, 50, 15 086 (1994).

    Google Scholar 

  29. A. I. Bobrysheva, V. T. Zyukov, and S. I. Beryl, Phys. Status Solidi B, 101, 69 (1980).

    Google Scholar 

  30. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B, 32, 6601 (1985).

    Google Scholar 

  31. A. I. Bobrysheva, S. I. Beryl, S. A. Moskalenko, and E. P. Pokatylov, Phys. Status Solidi B, 100, 281 (1980).

    Google Scholar 

  32. F. Henneberger and J. Voigt, Phys. Status Solidi B, 76, 313 (1976).

    Google Scholar 

  33. P. I. Khadzhi, S. A. Moskalenko, and S. N. Belkin, Pis'ma Zh. ´ Eksp. Teor. Fiz., 29, 223 (1979) [Sov. Phys.-JETP Lett., 29, 200 (1979)].

    Google Scholar 

  34. A. L. Ivanov, L. V. Keldysh, and V. V. Panashenko, Zh. ´ Eksp. Teor. Fiz., 99, 641 (1991) [Sov. Phys.-JETP, 72, 359 (1991)].

    Google Scholar 

  35. A. Mysyrowicz, D. Hulin, A. Antonetti, et al., Phys. Rev. Lett., 56, 2748 (1986); A. von Lehmen, D. S. Chemla, J. E. Zucker, and J. P. Heritage, Optics Lett., 11, 609 (1986).

    Google Scholar 

  36. D. Hulin and M. Joffre, Phys. Rev. Lett., 65, 3425 (1990).

    Google Scholar 

  37. R. Shimano and M. Kuwata-Gonokami, Phys. Rev. Lett., 72, 530 (1994).

    Google Scholar 

  38. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the Thirty-Two Point Groups, MIT, Cambridge (1963).

    Google Scholar 

  39. S. A. Moskalenko, Introduction to the Theory of High-Density Exciton Systems [in Russian], Shtiintsa, Kishinev (1983).

    Google Scholar 

  40. L. V. Keldysh, in: Problems in Theoretical Physics [in Russian], Nauka, Moscow (1972), p. 433.

    Google Scholar 

  41. V. F. Elesin and Yu. V. Kopaev, Zh. ´ Eksp. Teor. Fiz., 63, 1447 (1972) [Sov. Phys.-JETP, 36, 767 (1973)].

    Google Scholar 

  42. A. I. Bobrysheva, S. A. Moskalenko, and Hoang Ngoc Cam, Zh. ´ Eksp. Teor. Fiz., 103, 301 (1993) [Sov. Phys.-JETP, 76, 163 (1993)].

    Google Scholar 

  43. T. Yajima and Y. Taira, J. Phys. Soc. Jpn., 47, 1620 (1979).

    Google Scholar 

  44. B. Birkedal, V. G. Lyssenko, J. Erland, et al., Phys. Rev. Lett., 76, 672 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoc Cam, H. Exciton-Boson Formalism in the Theory of Laser-Excited Semiconductors and Its Application in Coherent Four-Wave-Mixing Spectroscopy. Journal of Russian Laser Research 25, 412–439 (2004). https://doi.org/10.1023/B:JORR.0000043731.28809.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORR.0000043731.28809.95

Navigation