Skip to main content
Log in

Trapped Ions Interacting with Laser Fields: a Perturbative Analysis without the Rotating Wave Approximation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The Hamiltonian describing a single ion placed in a potential trap in interaction with a laser beam is studied by means of a suitable perturbative approach. It is shown, in particular, that the rotating wave approximation does not provide the correct expression, already at the first perturbative order, of the evolution operator of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett., 76, 1796 (1996).

    Google Scholar 

  2. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science, 272, 1131 (1996).

    Google Scholar 

  3. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. Lett., 81, 3631 (1998).

    Google Scholar 

  4. K. Mølmer and A. Sørensen, Phys. Rev. Lett., 82, 1835 (1999).

    Google Scholar 

  5. D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A, 46, R6797 (1992).

    Google Scholar 

  6. D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A, 50, 67 (1994).

    Google Scholar 

  7. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. D, 54, R4649 (1996).

    Google Scholar 

  8. A. W. Vogt, J. I. Cirac, and P. Zoller, Phys. Rev. A, 53, 950 (1996).

    Google Scholar 

  9. S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev. Lett., 68, 3259 (1992).

    Google Scholar 

  10. S. Y. Kilin, Progress in Optics, 42, 1 (2001).

    Google Scholar 

  11. P. W. Shor, in: S. Goldwasser (ed.), Proceedings of the 35th Annual Symposium on the FOCS, IEEE Computer Society Press (1994), p. 124.

  12. J. I. Cirac and P. Zoller, Phys. Rev. Lett., 74, 4091 (1995).

    Google Scholar 

  13. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 75, 3788 (1995).

    Google Scholar 

  14. D. Jonathan and M. B. Plenio, Phys. Rev. Lett., 87, 127901 (2001).

    Google Scholar 

  15. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol., 103, 259 (1998).

    Google Scholar 

  16. D. F. V. James, Appl. Phys. B, 66, 181 (1998).

    Google Scholar 

  17. J. I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Advances in Atomic, Molecular and Optical Physics, 37, 237 (1996).

    Google Scholar 

  18. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley (1975).

  19. W. P. Schleich, Quantum Optics in Phase Space, Wiley-vch (2001).

  20. D. Jonathan, M. B. Plenio, and P. L. Knight, Phys. Rev. A, 62, 042307 (2000).

    Google Scholar 

  21. E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51, 89 (1963).

    Google Scholar 

  22. B. W. Shore and P. L. Knight, J. Mod. Opt., 40, 1195 (1993).

    Google Scholar 

  23. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett., 44, 1323 (1980).

    Google Scholar 

  24. G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett., 58, 353 (1987).

    Google Scholar 

  25. M. Fleischhauer and W. P. Schleich, Phys. Rev. A, 47, 4258 (1993).

    Google Scholar 

  26. C. Cohen-Tannoudji, J. Dupont-Roc, and C. Fabre, J. Phys. B: Atom. Mol. Opt. Phys., 6, L214 (1973).

    Google Scholar 

  27. K. Zaheer and M. S. Zubairy, Phys. Rev. A, 37, 1628 (1988).

    Google Scholar 

  28. R. Vyas and S. Singh, Phys. Rev. A, 33, 375 (1986).

    Google Scholar 

  29. S. J. D. Phoenix, J. Mod. Opt., 38, 695 (1991).

    Google Scholar 

  30. Mao-Fa Fang and Peng Zhou, J. Mod. Opt., 42, 1199 (1995).

    Google Scholar 

  31. F. Bloch and A. Siegert, Phys. Rev., 57, 522 (1940).

    Google Scholar 

  32. J. H. Shirley, Phys. Rev., 138, B979 (1965).

    Google Scholar 

  33. M. Tavis and F. W. Cummings, Phys. Rev., 170, 379 (1968).

    Google Scholar 

  34. P. Aniello et al., “A unified approach to slow and fast ion trap quantum computers” (in preparation).

  35. P. Aniello, A. Porzio, and S. Solimeno, “Evolution of the N-ion Jaynes-Cummings model beyond the standard rotating wave approximation,” J. Opt. B: Quantum Semiclass. Opt., 5, S233 (2003); quant-ph/0207151.

    Google Scholar 

  36. H. Moya-Cessa, A. Vidiella-Barranco, J. A. Roversi, Dagoberto S. Freitas, and S. M. Dutra, Phys. Rev. A, 59, 2518 (1999).

    Google Scholar 

  37. T. Kato, Perturbation Theory for Linear Operators, Springer (1995).

  38. M. Reed, and B. Simon, Methods of Modern Mathematical Physics, Academic Press (1978), Vol. IV.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aniello, P., Man'ko, V.I., Marmo, G. et al. Trapped Ions Interacting with Laser Fields: a Perturbative Analysis without the Rotating Wave Approximation. Journal of Russian Laser Research 25, 30–53 (2004). https://doi.org/10.1023/B:JORR.0000012483.40293.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORR.0000012483.40293.5a

Navigation