Skip to main content
Log in

Raman and Hyper-Rayleigh Scattering in Lithium Tetraborate Crystals

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Experimental studies of Raman scattering and the infrared reflection spectra of lithium tetraborate crystals were carried out within a broad temperature range with various polarization geometries. The crystals studied are characterized by record values of radiation resistance, transparence within a broad spectral range including the ultraviolet region, and nonlinear optical properties. A group-theoretical analysis of the vibrational spectra of this crystal was performed and fundamental vibrational terms were assigned to the symmetry types of the point group as well as the polarizations of the corresponding modes. The effective Raman cross section was measured and was found to be one order of magnitude higher than those of the known crystals, in which the stimulated Raman scattering (SRS) was observed. The nonlinear optical and electrooptical coefficients were evaluated and were found to be consistent with the results of independent measurements. The effect of a drastic increase in the intensity of quasi-elastic light scattering at 253 K was registered. It was associated with the phase transition that consists of the disordering of lithium ions with respect to the rigid skeleton. The formation energy for Frenkel defects in the lithium sublattice and the activation energy of the ionic conduction when heating the sample were calculated from the obtained temperature dependences of the intensity of quasielastic and hyper-Rayleigh light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chen, Y. Wu, and R. Li, J. Cryst. Growth, 99, 790 (1990).

    Google Scholar 

  2. T. Shiosaki, M. Adachi, and A. Kawabata, Proc. IEEE, 455 (1986).

  3. R. Komatsu, T. Sugawara, K. Sassa, et al., Appl. Phys. Lett., 70, 3492 (1997).

    Google Scholar 

  4. I. Naray-Szabo, Inorganic Crystal Chemistry, Akademiai Kiado, Budapest (1969).

    Google Scholar 

  5. W. H. Zachariasen, Acta Cryst., 17, 749 (1964).

    Google Scholar 

  6. H. König and A. Hoppe, Z. Anorg. Allg. Chem., 439, 71 (1978).

    Google Scholar 

  7. J. Krogh-Moe, Acta Cryst., 15, 190 (1962).

    Google Scholar 

  8. A. U. Sheleg and E. M. Zub, Kristallografia, 44, 905 (1999).

    Google Scholar 

  9. J. Krogh-Moe, Acta Cryst., B24, 179 (1968).

    Google Scholar 

  10. M. Natarajan, R. Faggiani, and I. D. Brown, Cryst. Struct. Comm., 8, 367 (1979).

    Google Scholar 

  11. S. F. Radaev, L. A. Muradian, L. F. Malakhova, et al., Kristallografia, 15, 1400 (1989).

    Google Scholar 

  12. T. Hahn (Ed.), International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht-Boston-London (1995).

    Google Scholar 

  13. J. D. Garrett, M. I. Natarajan, and J. E. Greedan, J. Cryst. Growth., 41, 225 (1977).

    Google Scholar 

  14. V. V. Zaretskii and Ya. V. Burak, Fiz. Tverd. Tela, 31, 80 (1989).

    Google Scholar 

  15. K. Ya. Borman and Ya. V. Burak, Izv. Akad. Nauk, Neorg. Mater., 26, 440 (1990).

    Google Scholar 

  16. E. M. Zub, Fiz. Tverd. Tela, 39, 1461 (1997).

    Google Scholar 

  17. A. S. Bhalla, L. E. Cross, and R. W. Whatmore, Jap. J. Appl. Phys., 24, 727 (1985).

    Google Scholar 

  18. Yu. N. Ivanov, Ya. V. Burak, and K. S. Aleksandrov, Fiz. Tverd. Tela, 32, 3379 (1990).

    Google Scholar 

  19. A. B. Kaplun and A. B. Meshalkin, Neorg. Mater., 35, 1349 (1999).

    Google Scholar 

  20. B. S. R. Sastry and F. A. Hummel, J. Am. Ceram. Soc., 41, 7 (1957).

    Google Scholar 

  21. Z. Shuquing, H. Chaoen, and Z. Hongwu, J. Cryst. Growth, 99, 805 (1990).

    Google Scholar 

  22. S.-J. Fan, W. Wang, J.-J. Xiang, and J.-X. Hu, J. Cryst. Growth, 99, 811 (1990).

    Google Scholar 

  23. V. Vezin, T. Sugawara, R. Komatsu, and S. Uda, Jap. J. Appl. Phys., 36, 5950 (1997).

    Google Scholar 

  24. R. Komatsu, T. Sugawara, T. Sugihara, and S. Uda, Jap. J. Appl. Phys., 34, 5467 (1995).

    Google Scholar 

  25. Ya. V. Burak, J. Cryst. Growth, 186, 302 (1998).

    Google Scholar 

  26. A. Yu. Kuznetsov, M. V. Kuznetsov, I. N. Ogorodnikov, et al., Fiz. Tverd. Tela, 36, 845 (1994).

    Google Scholar 

  27. C. Chen and Y. Wu, J. Opt. Soc. Am. B, 6, 616 (1989).

    Google Scholar 

  28. A. B. Sobolev, A. Yu. Kuznetsov, I. N. Ogorodnikov and A. V. Kruzhalov, Fiz. Tverd. Tela, 36, 1517 (1994).

    Google Scholar 

  29. Y.-N. Xu and W. Y. Ching, Phys. Rev. B, 41, 5471 (1990).

    Google Scholar 

  30. B. Wu, N. Chen, C. Chen, et al., Optics Lett., 14, 1080 (1989).

    Google Scholar 

  31. Ya. V. Burak, Ya. O. Dovgii, and I. V. Kityk, Fiz. Tverd. Tela, 31, 275 (1989).

    Google Scholar 

  32. O. T. Antonyak, Ya. V. Burak, I. T. Lyseiko, et al., Opt. i Spektrosk., 61, 550 (1986).

    Google Scholar 

  33. A. Yu. Kuznetsov, L. I. Isaenko, A. V. Kruzhalov, et al., Fiz. Tverd. Tela, 41, 57 (1999).

    Google Scholar 

  34. Ya. V. Burak, G. M. Gitskailo, I. T. Lyseiko, et al., Ukr. Fiz. Zh., 32, 1509 (1987).

    Google Scholar 

  35. Ya. V. Burak, V. M. Gaba, I. T. Lyseiko, et al., Ukr. Fiz. Zh., 36, 1638 (1991).

    Google Scholar 

  36. S. Furusawa, O. Chikagawa, S. Tange, et al., J. Phys. Soc. Japan, 60, 2691 (1991).

    Google Scholar 

  37. T. Y. Kwon, J. J. Ju, H. K. Kim, et al., Mater. Lett., 27, 317 (1996).

    Google Scholar 

  38. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics: Basics and Applications, Wiley, New York (1973).

    Google Scholar 

  39. V. Petrov, A. F. Rotermund, F. Noack, et al., J. Appl. Phys., 84, 5887 (1998).

    Google Scholar 

  40. A. S. Bhalla, L. E. Cross, and R. W. Whatmore, Jap. J. Appl. Phys., 24, 727 (1985).

    Google Scholar 

  41. S. Furusawa, S. Tange, Y. Ishibashi, K. Miwa, J. Phys. Soc. Japan, 59, 2532 (1990).

    Google Scholar 

  42. M. Maeda, H. Tachi, K. Honda, and I. Suzuki, Jap. J. Appl. Phys., 33, 1965 (1994).

    Google Scholar 

  43. A. E. Aliev, Ya. V. Burak, and I. T. Lyseiko, Izv. Akad. Nauk, Neorg. Mater., 26, 1991 (1990).

    Google Scholar 

  44. M. B. Salamon (Ed.), Physics of Superionic Conductors, Springer-Verlag, New York (1979).

    Google Scholar 

  45. A. E. Aliev, I. N. Kholmanov, and P. K. Khabbibulaev, Dokl. Akad. Nauk, Fizika, 365, 178 (1999).

    Google Scholar 

  46. D. P. Button, L. S. Mason, H. L. Muller, and D. R. Uhlmann, Sol. State Ionics, 9&;10, 585 (1983).

    Google Scholar 

  47. S. F. Radaev, N. I. Sorokin, and I. V. Simonov, Fiz. Tverd. Tela, 33, 3597 (1991).

    Google Scholar 

  48. N. P. Tekhanovich, A. U. Sheleg, and Ya. V. Burak, Fiz. Tverd. Tela, 32, 2513 (1990).

    Google Scholar 

  49. A. E. Aliev, V. F. Krivorotov, and P. K. Khabbibulaev, Fiz. Tverd. Tela, 39, 1548 (1997).

    Google Scholar 

  50. A. U. Sheleg, T. I. Dekola, N. P. Tekhanovich, and A. M. Luginetz, Fiz. Tverd. Tela, 39, 624 (1997).

    Google Scholar 

  51. L. Bohaty, S. Haussuhl, and J. Liebertz, Cryst. Res. Technol., 24, 1159 (1989).

    Google Scholar 

  52. I. M. Sil'verstova, P. A. Senyuschenkov, V. A. Lomonov, and Yu. V. Pisarevskii, Fiz. Tverd. Tela, 31, 311 (1989).

    Google Scholar 

  53. A. E. Aliev, Ya. V. Burak, V. V. Vorob'ev, et al., Fiz. Tverd. Tela, 32, 2826 (1990).

    Google Scholar 

  54. A. A. Sehery and D. J. Somerford, J. Phys.: Cond. Matter, 1, 2279 (1989).

    Google Scholar 

  55. A. E. Aliev and R. R. Valetov, Fiz. Tverd. Tela, 34, 3061 (1992).

    Google Scholar 

  56. G. L. Pault and W. Taylor, J. Phys. C: Solid State Phys., 15, 1753 (1982).

    Google Scholar 

  57. S. Furusawa, S. Tange, Y. Ishibashi, K. Miwa, J. Phys. Soc. Japan, 59, 1825 (1990).

    Google Scholar 

  58. T. K. Berko, Ya. O. Dovgii, I. V. Kytik, et al., Ukr. Fiz. Zh., 38, 39 (1993).

    Google Scholar 

  59. Ya. V. Burak, Ya. O. Dovgii, and I. V. Kityk, Zh. Prikl. Spektroskop., 52, 126 (1990).

    Google Scholar 

  60. V. T. Adamiv, T. K. Berko, I. V. Kytik, et al., Ukr. Fiz. Zh., 37, 368 (1992).

    Google Scholar 

  61. V. S. Lebedev and V. D. Lysov, Prib. Tekh. Eksp., No. 6, 97 (1975).

    Google Scholar 

  62. S. S. Kurochkin, KAMAK-VEKTOR Systems [in Russian], Energoatoimizdat, Moscow (1981).

    Google Scholar 

  63. Yu. N. Potapovich, S. A. Popov, A. V. Vdovin, and V. I. Pastukhov, Vestnik Dnepropetrovskogo Universiteta. Fizika. Radiofizika., 53 (1994).

  64. W. T. Eadie et al., Statistical Methods and Experimental Physics,North-Holland, Amsterdam (1971).

    Google Scholar 

  65. V. S. Gorelik, “On the anomalies of the spectral intensity of inelastic light scattering near the phase transition point in crystals,” in: M. M. Sushchinsky (Ed.), Inelastic Light Scattering in Crystals, Proceedings of the Lebedev Physical Institute [in Russian], Nauka, Moscow (1987), Vol. 180, p. 180.

    Google Scholar 

  66. G. N. Zhizhin, B. N. Mavrin, and V. F. Shabanov, Optical Vibrational Spectra of Crystals [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  67. T. Kurosawa, J. Phys. Soc. Japan, 16, 1298 (1961).

    Google Scholar 

  68. M. V. Belousov, Fiz. Tverd. Tela, 15, 1206 (1973).

    Google Scholar 

  69. G. Andermann, A. Caron, and D. A. Rows, J. Opt. Soc. Am., 55, 1210 (1965).

    Google Scholar 

  70. E. A. Vinogradov, G. N. Zhizhin, I. I. Khammadov, et al., Fiz. Tverd. Tela, 24, 103 (1982).

    Google Scholar 

  71. I. Freund, Phys. Rev. Lett., 21, 1404 (1968).

    Google Scholar 

  72. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).

    Google Scholar 

  73. S. Yu. Stefanovich and Yu. N. Venevtsev, Izv. Akad. Nauk SSSR, Ser. Fiz., 41, 537 (1977).

    Google Scholar 

  74. S. Kielich, Molekularna Optyka Nieliniowa [in Polish], PWN, Warszawa-Poznań (1977).

    Google Scholar 

  75. V. N. Moiseenko, A. V. Vdovin, and J. V. Burak, Proc. SPIE, 2648, 523 (1995).

    Google Scholar 

  76. V. N. Moiseenko, A. V. Vdovin, and J. V. Burak, “Studying the Raman Scattering Intensity Fluctations Origin in Li2B4O7 Crystals under the Temperature Variation,” in: Proc. of the International Autumn School-Conference for Young Scientists “Solid state Physics: Fundamentals and Applications” (SSPFA'95), Uzhgorod, Ukraine (1995), p. 43.

    Google Scholar 

  77. H. Poulet and J. P. Mathieu, Vibrational Spectra and Symmetry of Crystals, Gordon and Breach, Paris (1970).

    Google Scholar 

  78. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Mir, Moscow (1991).

    Google Scholar 

  79. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev., 142, 570 (1966).

    Google Scholar 

  80. S. P. S. Porto, J. A. Giordmane, and T. C. Damen, Phys. Rev., 147, 608 (1966).

    Google Scholar 

  81. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, Opt. i Spectrosk., 81, 620 (1996).

    Google Scholar 

  82. V. N. Moiseenko, V. S. Gorelik, J. V. Burak, A. V. Vdovin, “Raman Scattering Study of Incommensurate Li2B4O7 Crystals,” in: Proc. of the XIVth International Conference on Raman Spectroscopy, Hong Kong (1994), p. 361.

  83. A. N. Lazarev, A. P. Mirgorodskii, and I. S. Ignat'ev, Vibrational Spectra of Complex Oxides [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  84. A. M. Heyns, K.-J. Range, and M. Wildenauer, Spectrochimica Acta, 46A, 1621 (1990).

    Google Scholar 

  85. S. D. Ross, Spectrochimica Acta, 28A, 1555 (1972).

    Google Scholar 

  86. A. N. Lazarev, Vibrational Spectra and the Structure of Silicates [in Russian], Nauka, Leningrad (1968).

    Google Scholar 

  87. B. Orel, M. Klanjsek, V. Moiseenko, et al., Phys. Stat. Sol. (b), 128, 53 (1985).

    Google Scholar 

  88. C. N. R. Rao, H. S. Randhawa, N. V. R. Reddy, and D. Chakravorty, Spectrochim. Acta, 31A, 1283 (1975).

    Google Scholar 

  89. F. Gervais, Optics Commun., 22, 116 (1977).

    Google Scholar 

  90. L. K. Vodopyanov, E. A. Vinogradov, and V. S. Vinogradov, Fiz. Tverd. Tela, 16, 849 (1974).

    Google Scholar 

  91. F. Gervais, Solid State Commun., 18, 191 (1976).

    Google Scholar 

  92. J. C. Phillips, Rev. Mod. Phys., 42, 317 (1970).

    Google Scholar 

  93. W. D. Jonston, Jr., Phys. Rev. B, 1, 3494 (1970).

    Google Scholar 

  94. I. P. Kaminow and E. H. Turner, Phys. Rev. B, 5, 1564 (1972).

    Google Scholar 

  95. V. S. Gorelik, O. G. Zolotukhin, and M. M. Sushchinsky, Zh. Prikl. Spektrosk., 28, 945 (1978).

    Google Scholar 

  96. V. S. Gorelik, O. G. Zolotukhin, and M. M. Sushchinsky, Fiz. Tverd. Tela, 22, 1024 (1980).

    Google Scholar 

  97. V. N. Moiseenko and V. S. Gorelik, Kratkie Soobshch. Fiz., No. 3, 20 (1992).

    Google Scholar 

  98. V. S. Gorelik and M. M. Sushchinsky, Fiz. Tverd. Tela, 11, 3340 (1969).

    Google Scholar 

  99. V. N. Moiseenko, A. V. Vdovin, V. S. Gorelik, and Ya. V. Burak, Kratkie Soobshch. Fiz., No. 2, 3 (2000).

    Google Scholar 

  100. V. N. Moiseenko, A. V. Vdovin, and M. P. Dergachov, Proc. SPIE, 4069, 36 (2000).

    Google Scholar 

  101. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, “Light Scattering Peculiarities Near the Phase Transition Point in Li2B4O7 Crystals,” in: Abstracts of the VIth Ukrainian-Polish Meeting on Phase Transitions and Ferroelectric Physics, Dnepropetrovsk, Ukraine (1998), p. 61.

    Google Scholar 

  102. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, “Nonlinear Optical Phenomena in Li2B4O7 Crystals,” in: Abstracts of the Inernational Scientific Conference “Optics of Crystals” (OC-2000), Mozyr, Belarus (2000), p. 42.

    Google Scholar 

  103. P. Toledano and J.-C. Toledano, Phys. Rev. B, 25, 1946 (1982).

    Google Scholar 

  104. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Symmetry of Crystals [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  105. V. N. Moiseenko, A. V. Vdovin, V. S. Gorelik, and Ya. V. Burak, Kratkie Soobshch. Fiz., No. 10, 30 (1998).

    Google Scholar 

  106. A. G. Christy, Acta Cryst., B51, 753 (1995).

    Google Scholar 

  107. V. G. Bar'yakhtar, Solid State Physics: Encyclopaedia [in Russian], Naukova Dumka, Kiev (1998), p. 652.

    Google Scholar 

  108. V. N. Moiseenko, A. V. Vdovin, and M. P. Dergachev, Visnik Dnipropetrov'skogo Universitetu. Fizika, Radioelektronika., 1, 153 (1998).

    Google Scholar 

  109. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, “About an Opportunity of Phase Transition in Li2B4O7 Pyroelectric Crystals,” in: Proc. of the XVth International Conference on Raman Spec-troscopy, Pittsburg (1996), p. 1008.

  110. V. L. Ginzburg, U. I. Goldberg, V. A. Golovko, et al., Light Scattering Close to the Phase Transition Points [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  111. A. D. Bruce and R. A. Cowley, Structural Phase Transitions, Taylor and Francis, Philadelphia, Pa. (1981).

    Google Scholar 

  112. S. Ma, Modern Theory of Critical Phenomena, Benjamin, Reading, Mass. (1976).

    Google Scholar 

  113. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, “Temperature Anomalies in Raman Spectra Close to the Translation Phase Transition in Li2B4O7 Crystals,” in: Book of Abstracts of the XVth All-Russian Conference on Physics of Ferroelectrics (VKS-XV) [in Russian], Rostov-on-Don (1999), p. 92.

  114. A. V. Vdovin, V. N. Moiseenko, and Ya. V. Burak, “On the Temperature Anomalies in Raman Spectra of Li2B4O7 Crystals,” in: Book of Abstracts of the First Ukrainian School-Workshop on the Physics of Ferroelectrics and Related Materials [in Ukrainian], L'viv, Ukraine (1999), p. 39.

    Google Scholar 

  115. K. S. Nak, H. C. Sung, R. L. Ae, and N. K. Jung, New Phys. (Korean Physical Society), 35, 670 (1995).

    Google Scholar 

  116. A. V. Rakov, “Studies of the Brownian rotary motion of molecules of condenced matter by Raman scattering and infrared absorption methods,” in: D. V. Skobeltsyn (Ed.), Studies on Molecular Spectroscopy, Proceedings of the Lebedev Physical Institute [in Russian], Nauka, Moscow (1964), Vol. 27, p. 111.

    Google Scholar 

  117. Yu. S. Kuz'minov, Ferroelectric Crystals for Control of Laser Emission [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  118. A. F. Witt and H. C. Gatos, J. Electrochem. Soc., 113, 808 (1966).

    Google Scholar 

  119. Yu. S. Kuz'minov, Electrooptic and Nonlinear-Optical Crystal of Lithium Niobate [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  120. A. A. Ballman, S. K. Kurts, and H. Brown, J. Cryst. Growth, 10, 185 (1971).

    Google Scholar 

  121. R. C. Miller, J. Phys. Soc. Japan, 28,Suppl. 1, 15 (1970).

    Google Scholar 

  122. J. p. van der Ziel and N. Bloembergen, Phys. Rev., 135, A1662 (1964).

    Google Scholar 

  123. V. D. Sal'nikov, S. Yu. Stefanovich, V. V. Chechkin, et al., Fiz. Tverd. Tela, 16, 196 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelik, V.S., Vdovin, A.V. & Moiseenko, V.N. Raman and Hyper-Rayleigh Scattering in Lithium Tetraborate Crystals. Journal of Russian Laser Research 24, 553–605 (2003). https://doi.org/10.1023/B:JORR.0000004168.99752.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JORR.0000004168.99752.0e

Navigation