Late Holocene lake level dynamics inferred from magnetic susceptibility and stable oxygen isotope data: Lake Elsinore, southern California (USA)

Abstract

Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (∼3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed δ18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.

This is a preview of subscription content, log in to check access.

References

  1. Anderson M.A. 2001. Internal Loading and Nutrient Cycling in Lake Elsinore: Final Report to Santa Ana Regional Water Quality Control Board, 52 pp.

  2. Anderson W.T., Mullins H.T. and Ito E. 1997. Stable isotope record from Seneca Lake, New York: evidence for a cold paleoclimate following the Younger Dryas. Geology 25: 135–138.

    Google Scholar 

  3. Benson L.V., Meyers P.A. and Spencer R.J. 1991. Change in the size of Walker Lake during the past 5000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81: 189–214.

    Google Scholar 

  4. Benson L.V., Burdett J.W., Kashgarian M., Lund S.P., Phillips F.M. and Rye R.O. 1996. Climatic and hydrological oscillations in the Owens Lakes Basin and Adjacent Sierra Nevada, California. Science 274: 746–749.

    Google Scholar 

  5. Benson L.V., May H.M., Antweiler R.C., Brinton T.I., Kashgarian M., Smoot J.P. and Lund S.P. 1998. Continuous lake-sediment records of glaciation in the Sierra Nevada between 52,600 and 12,500 14C year B.P.. Quat. Res. 50: 113–127.

    Google Scholar 

  6. Benson L. and Paillet F. 2002. HIBAL: a hydrologic-isotopicbalance model for application to paleolake systems. Quat. Sci. Rev. 21: 1521–1539.

    Google Scholar 

  7. Benson L., Kashgarian M., Lund S., Paillet F., Smoot J., Kester C., Meko D., Lindstrom S., Mensing S. and Rye R. 2002. Multidecadal and multicentennial droughts affecting Northern California and Nevada: implication for the future of the West. Quat. Res. 21: 659–682.

    Google Scholar 

  8. Bjorck S., Dedaring J.A. and Jonsson A. 1982. Magnetic susceptibility of Late Weischselian deposits in southeastern Swedan. Boreas 11: 99–111.

    Google Scholar 

  9. Brown W.J. and Rosen M.R. 1995. Was there a Pliocene-Pleistocene fluvial-lacustrine connection between Death Valley and the Colorado River. Quat. Res. 43: 286–296.

    Google Scholar 

  10. Brown S., Bierman P., Lini A., Davis P.T. and Southon J. 2002. Reconstructing lake and drainage basin history using terrestrial sediment layers: analysis of cores from a post-glacial lake in New England, USA. J. Paleolim. 28: 219–236.

    Google Scholar 

  11. Callender E. and Rice K.C. 2000. The urban environmental gradient: Anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ. Sci. Technol. 34: 232–238.

    Google Scholar 

  12. Cayan D.R., Dettinger M.D., Diaz H.F. and Graham N.E. 1998. Decadal variability of precipitation over Western North America. J. Climate 11: 3148–3166.

    Google Scholar 

  13. Changnon S.A. 2000. Reactions and responses to recent urban droughts. Phys. Geogr. 21: 1–20.

    Google Scholar 

  14. Cole K.L. and Webb R.H. 1985. Late Holocene changes in Greenwater Valley, Mojave Desert, California. Quat. Res. 23: 227–235.

    Google Scholar 

  15. Damiata B.N. and Lee T.-C. 1986. Geothermal exploration in the vicinity of Lake Elsinore, Southern California. Geothermal Resource Council Trans. 10: 119–123.

    Google Scholar 

  16. Davis M.B. and Ford M.S.J. 1982. Sediment focusing in Mirror Lake, New Hampshire. Limnol. Oceanogr. 27: 137–150.

    Google Scholar 

  17. Dettinger M.D., Cayan D.R., Diaz H.F. and Meko D.M. 1998. North south precipitation patterns in western North America on interannaual-to-decadal timescales. J. Climate 11: 3095–3111.

    Google Scholar 

  18. Douglas A.V., Cayan D.R. and Namias J. 1982. Large-scale changes in North Pacific and North American weather pattern in recent decades. Monthly Weather Rev. 110: 1851–1862.

    Google Scholar 

  19. Downing J.A. and Rath L.C. 1988. Spatial patchiness in the lacustrine sedimentary environment. Limnol. Oceanogr. 33: 447–458.

    Google Scholar 

  20. Drummond C.N., Patterson W.P. and Walker J.C.G. 1995. Climatic forcing of carbon-oxygen isotopic covariance in temperate region marl lakes. Geology 23: 1031–1034.

    Google Scholar 

  21. Ely L.L. 1997. Response of extreme floods in the southwestern United States to climatic variations in the late Holocene. Geomorphology 19: 175–201.

    Google Scholar 

  22. Engel R. 1959. Geology of the Lake Elsinore quadrangle, California. Calif. Div. Mines Bull. 146: 52

    Google Scholar 

  23. Enzel Y., Cayan D.R., Anderson R.Y. and Wells S.G. 1989. Atmospheric circulation during Holocene lake stands in the Mojave Desert: evidence of regional climate change. Nature 341: 44–47.

    Google Scholar 

  24. Enzel Y., Brown W.J., Anderson R.Y., McFadden L.D. and Wells S.G. 1992. Short-duration Holocene lakes in the Mojave River drainage basin, Southern California. Quat. Res. 38: 60–73.

    Google Scholar 

  25. French J.J. and Busby M.W. 1974. Flood-hazard study — 100-year flood stage for Baldwin Lake San Bernardino County California. US Geological Survey Water-Resources Investigations 26–74, pp. 1–18.

    Google Scholar 

  26. Friedman I., Smith G.I., Gleason J.D., Warden A. and Harris J.M. 1992. Stable Isotope Composition of Waters in Southeastern California 1. Modern Precipitation. J. Geophys. Res. 97: 5795–5812.

    Google Scholar 

  27. Gilbert R. 2003. Spatially irregular sedimentation in a small, morphologically complex lake: implications for paleoenvironmental studies. J. Paleolim. 29: 209–220.

    Google Scholar 

  28. Grenda D. 1997. Continuity and Change: 8,500 Years of Lacustrine Adaptation on the Shores of Lake Elsinore. Statistical Re. Tech. Ser. 59: 324.

    Google Scholar 

  29. Hammarlund D., Barnekow L., Birks H.J.B., Buchardt B. and Edwards T.W.D. 2002. Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Swedan. The Holocene 12: 339–351.

    Google Scholar 

  30. Hilfinger M.F. IV, Mullins H.T., Burnett A. and Kirby M.E. 2001. A 2500 year sediment record from Fayetteville Green Lake, New York: evidence for anthropogenic impacts and historic isotope shift. J. Paleolim. 26: 293–305.

    Google Scholar 

  31. Hodell D.A., Schelske C.L., Fahnenstiel G.L. and Robbins L.L. 1998. Biologically induced calcite precipitation and its isotopic composition in Lake Ontario. Limnol. Oceanogr. 43: 187–199.

    Google Scholar 

  32. Hull A.G. 1990. Seismotectonics of the Elsinore-Temecula trough, Elsinore fault zone, southern California. Ph.D. Thesis, University of California, Santa Barbara, pp. 233.

    Google Scholar 

  33. IPCC Working Group, 2001. Summary for policy makers. http://www.ipcc.ch.

  34. Johnson T.C., Halfman J.D. and Showers W.J. 1991. Paleoclimate of the past 4000 years at Lake Turkana, Kenya, based on the isotopic composition of authigenic calcite. Palaeoclimatol. Palaeoceanogr. Palaeoecol. 85: 189–198.

    Google Scholar 

  35. Kirby M.E., Lund S.P., Poulsen C.P., Patterson W.P. and Burnett A.W. 2002. On the Use of Historic Atmosphere-Lake level Relationships for Reconstructing Stable Oxygen Isotope-Based Paleohydrology in Southern CA. American Geophysical Union Fall Meeting.

  36. Kirby M.E., Lund S.P., Poulsen C.P., Patterson W.P. and Hartman C. 2002. Evidence for High Amplitude, High Frequency Holocene Paleohydrological Change From a Southern Californian Lacustrine Site (Lake Elsinore, Riverside County). Abstracts with Programs — Geological Society of America Annual Meeting.

  37. Kirby M.E., Mullins H.T., Patterson W.P. and Burnett A.W. 2002c. Late glacial-holocene atmospheric circulation and precipitation in the northeast United States inferred from modern calibrated stable oxygen and carbon isotopes. Geol. Soc. Am. Bull. 114: 1326–1340.

    Google Scholar 

  38. Kirby M.E., Patterson W.P., Mullins H.T. and Burnett A.W. 2002d. Post-Younger Dryas Climate Interval Linked to Circumpolar Vortex Variability: Evidence from Fayetteville Green Lake, New York. Climate Dynamics 19: 321–330.

    Google Scholar 

  39. Latif M. and Barnett T.P. 1994. Causes of decadal climate variability over the North Pacific and North America. Science 266: 634–637.

    Google Scholar 

  40. Lau N.-C. 1988. Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci. 45: 2718–2743.

    Google Scholar 

  41. Lehman J.T. 1975. Reconstructing the rate of accumulation of lake sediment: the effect of sediment focusing. Quat. Res. 5: 541–550.

    Google Scholar 

  42. Li H.-C. and Ku T.-L. 1997. d13C-d18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 133: 69–80.

    Google Scholar 

  43. Li H.-C., Bischoff J.L., Ku T.-L., Lund S.P. and Stott L.D. 2000. Climate variability in east-central California during the past 1000 years reflected by high-resolution geochemical and isotopic records from Owens Lake sediments. Quat. Res. 54: 189–197.

    Google Scholar 

  44. Lister G.S., Kelts K., Chen K.-Z., Yu J.-Q. and Niessen F. 1991. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeoclimatol. Palaeoceanogr. Palaeoecol. 84: 141–162.

    Google Scholar 

  45. Lynch H.B. 1931. Rainfall and stream run-off in Southern California since 1769. The Metropolitan Water District of Southern California, Los Angeles, California, pp. 1–31.

    Google Scholar 

  46. Mann J.F. 1947. The Sediments of Lake Elsinore. MSc Thesis, University of Southern California, pp. 33.

  47. Mann J.F. Jr. 1956. The origin of Elsinore Lake Basin. Bull. Southern California Acad. Sci. 55: 72–78.

    Google Scholar 

  48. McGlashan H.D. 1921. Surface water supply of the Pacific slope of Southern California. United States Geological Survey Water-Supply Paper 47: 321–324.

  49. McKenzie J.A. and Hollander D.J. 1993. Oxygen-isotope: record in recent carbonate sediments from Lake Greifen, Switzerland (1750–1986): application of continental isotopic indicator for evaluation of changes in climate and atmospheric circulation patterns. Climate Change Continental Isotopic Records Geophys. Monogr. 78: 101–111.

    Google Scholar 

  50. Mensing S. and Byrne R. 1998. Pre-mission invasion of Erodium cicutarium in California. J. Biogeogr. 25: 757–762.

    Google Scholar 

  51. Metropolitan Water District, 2003. Report on the Metropolitan's Water Supply, pp. 29.

  52. Meyers P.A. 2002. Evidence of mid-Holocene climate instability from variation in carbon burial in Seneca Lake, New York. J. Paleolim. 28: 237–244.

    Google Scholar 

  53. Miguel S., Bolivar J.P. and Garcia-Tenorio R. 2003. Mixing, sediment accumulation and focusing using 210Pb and 137Cs. J. Paleolim. 29: 1–11.

    Google Scholar 

  54. Minnich R.A. 1984. Snow drifting and timberline dynamics on Mount San Gorgonio, California, USA. Arctic Alpine Res. 16: 395–412.

    Google Scholar 

  55. Minnich R.A. 1986. Snow levels and amounts in the mountains of Southern California. J. Hydrol. 89: 37–58.

    Google Scholar 

  56. Namias J. 1951. The Great Pacific Cyclone of Winter 1949–50: a case study in the evolution of climatic anomalies. J. Meteorol. 8: 251–261.

    Google Scholar 

  57. Namias J. and Cayan D.R. 1981. Large-scale air-sea interactions and short-period climatic fluctuations. Science 214: 869–876.

    Google Scholar 

  58. Namias J., Yuan X. and Cayan D.R. 1988. Persistence of North Pacific sea surface temperature and atmospheric flow patterns. J. Climate 1: 682–703.

    Google Scholar 

  59. Ore H.T. and Warren C.N. 1971. Late-Pleistocene-early Holocene geomorphic history of Lake Mojave, California. Geol. Soc. Am. Bull. 82: 2553–2562.

    Google Scholar 

  60. Pacific Groundwater Digest (Anonymous), 1979. Aquifer Exploration at Lake Elsinore. Pacific Groundwater Digest August: 10–12.

  61. Pyke C.B. 1972. Some Meteorological Aspects of the Seasonal Distribution of Precipitation in the Western United States and Baja California. University of California Water Resources Center 139, 215 pp.

  62. Redmond K.T. and Koch R.W. 1991. Surface climate and stream flow variability in the Western United States and their relationship to large-scale circulation indices. Water Resources Res. 27: 2381–2399.

    Google Scholar 

  63. Rosen M.R. 1991. Sedimentologic and geochemical constraints on the hydrologic evolution of Bristol Dry Lake Basin, California, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 84: 229–257.

    Google Scholar 

  64. Schelske C. and Hodell D. 1991. Recent changes in productivity and climate of Lake Ontario detected by isotope analysis of sediments. Limnol. Oceanogr. 36: 961–975.

    Google Scholar 

  65. Schonher T. and Nicholson S.E. 1989. The Relationship Between California Rainfall and ENSO Events. J. Climate 2: 1258–1269.

    Google Scholar 

  66. Seltzer G., Rodbell D. and Burns S. 2000. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28: 35–38.

    Google Scholar 

  67. Smoot J.P. 2003. Impact of sedimentation styles on paleoclimate proxies in late Pleistocene through Holocene lakes in the western US. Third International Limnogeology Congress Abstract Volume: p. 273.

  68. Stuiver M. 1970. Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.

    Google Scholar 

  69. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac F.G., v.d. Plicht J. and Spurk M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal B.P.. Radiocarbon 40: 1041–1083.

    Google Scholar 

  70. Teranes J.L., McKenzie J.A., Lotter A.F. and Sturm M. 1999. Stable isotope response to lake eutrophication: calibration of a high-resolution lacustrine sequence from Baldeggersee, Switzerland. Limnol. Oceanogr. 44: 320–333.

    Google Scholar 

  71. Teranes J.L. and McKenzie J.A. 2001. Lacustrine oxygen isotope record of twentieth-century climate change in central Europe: evaluation of climate controls on oxygen isotopes in precipitation. J. Paleolim. 26: 131–146.

    Google Scholar 

  72. Thompson R., Battarbee R.W., O'Sullivan P.E. and Oldfield F. 1975. Magnetic susceptibility of lake sediments. Limnol. Oceanogr. 20: 687–698.

    Google Scholar 

  73. Trenberth K.B. and Hurrell J.W. 1994. Decadal atmosphereocean variations in the Pacific. Climate Dynamics 9: 303–319.

    Google Scholar 

  74. nawqa/index.html.

  75. Weaver R.L. 1962. Meteorology of Hydrologically Critical Storms in California. Hydrometeorological Report No. 37, US Weather Bureau, Washington, DC, pp. 110.

    Google Scholar 

  76. Williams A.E. and Rodoni D.P. 1997. Regional isotope effects and application to hydrologic investigations in southwestern California. Water Resources Res. 33: 1721–1729.

    Google Scholar 

  77. Yu J.Q. and Kelts K.R. 2002. Abrupt changes in climatic conditions across the late-glacial/Holocene transition on the N.E. Tibet-Qinghai Plateau: evidence from Lake Qinghai, China. J. Paleolim. 28: 195–206.

    Google Scholar 

  78. Yu Z., McAndrews J.H. and Eicher U. 1997. Middle-Holocene dry climate caused by changes in atmospheric circulation patterns: Evidence from lake levels and stable isotopes. Geology 25: 251–254.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Kirby.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kirby, M.E., Poulsen, C.J., Lund, S.P. et al. Late Holocene lake level dynamics inferred from magnetic susceptibility and stable oxygen isotope data: Lake Elsinore, southern California (USA). Journal of Paleolimnology 31, 275–293 (2004). https://doi.org/10.1023/B:JOPL.0000021710.39800.f6

Download citation

  • Lake Elsinore
  • Lake level
  • Isotopes
  • Magnetic susceptibility
  • Precipitation
  • Southern California