Skip to main content
Log in

A Substrate-Phage Approach for Investigating Caspase Specificity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

We have developed a substrate-phage approach for examining the substrate specificities of an important group of proteases involved in apoptosis—the caspases. After establishing selection conditions with caspases-3 and caspase-8 vs control substrate-phage, we sorted X4 and X6 diversity libraries, identified consensus motifs that agree with previously defined caspase substrate motifs, confirmed the selection of active substrates using synthetic peptide rate assays under a range of buffer conditions, and compared kinetic parameters for selected substrates. The libraries produced some variations on the canonical motifs. From caspase-3 selections, a phage-derived synthetic peptide, DLVD, was hydrolyzed up to 170% faster than the canonical substrate DEVD. The P4 Asp residue was essential for good protease-sensitivity, but even substrates with substitutions at P4 were selected by phage and shown to be hydrolyzed. Caspase-8 selections, as expected, yielded predominantly clones containing a Glu at P3. In this case, the most frequent phage-derived peptide, LEVD, was cleaved at a rate of only 20% of the canonical caspase-8 substrate LETD. However, based on substitutions observed in the phage selectants at P4, a substrate peptide, AETD, was designed and shown to be hydrolyzed up to 160% faster than LETD. We consider factors that may contribute to differences in caspase substrate-phage selections vs synthetic peptide studies on the caspases, and suggest that the two approaches may offer complementary information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Back, S. H., Shin, S., and Jang, S. K. (2002). J. Biol. Chem. 277: 27200–27209.

    Google Scholar 

  • Barry, M. A., and Eastman, A. (1992). Biochem. Biophys. Res. Commun. 186: 782–789.

    Google Scholar 

  • Dall'Acqua, W., Halin, C., Rodrigues, M. L., and Carter, P. (1999). Protein Eng. 12: 981–987.

    Google Scholar 

  • Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. (1999). Annu. Rev. Biochem. 68: 383–424.

    Google Scholar 

  • Engelman, D. M., Steitz, T. A., and Goldman, A. (1986). Annu. Rev. Biophys. Biophys. Chem. 15: 321–353.

    Google Scholar 

  • Ethell, D. W., Bossy-Wetzel, E., and Bredesen, D. E. (2001). Biochim. Biophys. Acta 1541: 231–238.

    Google Scholar 

  • Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G., and Mellman, I. (1983). Proc. Natl. Acad. Sci. USA. 80: 3334–3338.

    Google Scholar 

  • Garcia-Calvo, M., Peterson, E. P., Rasper, D. M., Vaillancourt, J. P., Zamboni, R., Nicholson, D. W., and Thornberry, N. A. (1999). Cell Death Differ. 6: 362–369.

    Google Scholar 

  • Germain, M., Affar, E. B., D'Amours, D., Dixit, V. M., Salvesen, G. S., and Poirier, G. G. (1999). J. Biol. Chem. 274: 28379–28384.

    Google Scholar 

  • Harris, J. L., Backes, B. J., Leonetti, F., Mahrus, S., Ellman, J. A., and Craik, C. S. (2000). Proc. Natl. Acad. Sci. USA 97: 7754–7759.

    Google Scholar 

  • Kipp, M., Schwab, B. L., Przybylski, M., Nicotera, P., and Fackelmayer, F. O. (2000). J. Biol. Chem. 275: 5031–5036.

    Google Scholar 

  • Kuida, K., Zheng, T. S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R. A. (1996). Nature 384: 368–372.

    Google Scholar 

  • Lowman, H. B., and Wells, J. A. (1993). J. Mol. Biol. 234: 564–578.

    Google Scholar 

  • Lowman, H. B. (1998). Methods Mol. Biol. 87: 249–264.

    Google Scholar 

  • Matthews, D. J., Goodman, L. J., Gorman, C. M., and Wells, J. A. (1994). Protein Sci. 3:1197–1205.

    Google Scholar 

  • Matthews, D. J., and Wells, J. A. (1993). Science 260: 1113–1117.

    Google Scholar 

  • Mittl, P. R. E., Di Marco, S., Krebs, J. F., Bai, X., Karanewsky, D. S., Priestle, J. P., Tomaselli, K. J., and Grutter, M. G. (1997). J. Biol. Chem. 272: 6539–6547.

    Google Scholar 

  • Moretti, A., Weig, H. J., Ott, T., Seyfarth, M., Holthoff, H. P., Grewe, D., Gillitzer, A., Bott-Flugel, L., Schomig, A., Ungerer, M., and Laugwitz, K. L. (2002). Proc. Natl. Acad. Sci. U S A 99: 11860–11865.

    Google Scholar 

  • Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., et al.(1995). Nature 376: 37–43.

    Google Scholar 

  • Salvesen, G. S. (2002). Essays Biochem. 38: 9–19.

    Google Scholar 

  • Samejima, K., Svingen, P. A., Basi, G. S., Kottke, T., Mesner, P. W., Jr., Stewart, L., Durrieu, F., Poirier, G. G., Alnemri, E. S., Champoux, J. J., Kaufmann, S. H., and Earnshaw, W. C. (1999). J. Biol. Chem. 274: 4335–4340.

    Google Scholar 

  • Schechter, I., and Berger, A. (1967). Biochem. Biophys. Res. Commun. 27: 157–162.

    Google Scholar 

  • Slee, E. A., Adrain, C., and Martin, S. J. (2001). J. Biol. Chem. 276: 7320–7326.

    Google Scholar 

  • Stennicke, H. R., Renatus, M., Meldal, M., and Salvesen, G. S. (2000). Biochem. J. 350: 563–568.

    Google Scholar 

  • Stennicke, H. R., and Salvesen, G. S. (2000). Methods Enzymol. 322: 91–100.

    Google Scholar 

  • Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovich, J. A., Banach, D., Ghayur, T., Brady, K. D., and Wong, W. W. (1997). J. Biol. Chem. 272: 9677–9682.

    Google Scholar 

  • Thornberry, N. A., Chapman, K. T., and Nicholson, D. W. (2000). Methods Enzymol. 322: 100–110.

    Google Scholar 

  • Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T., and Nicholson, D. W. (1997). J. Biol. Chem. 272: 17907–17911.

    Google Scholar 

  • Uren, A. G., O'Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V., and Dixit, V. M. (2000). Molec. Cell 6: 961–967.

    Google Scholar 

  • Watt, W., Koeplinger, K. A., Mildner, A. M., Heinrikson, R. L., Tomasselli, A. G., and Watenpaugh, K. D. (1999). Struct. Fold Des. 7: 1135–1143.

    Google Scholar 

  • Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S. A., Senaldi, G., Howard, T., Lowe, S. W., and Mak, T. W. (1998). Genes Dev. 12: 806–819.

    Google Scholar 

  • Zheng, T. S., Hunot, S., Kuida, K., and Flavell, R. A. (1999). Cell Death Differ. 6: 1043–1053.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lien, S., Pastor, R., Sutherlin, D. et al. A Substrate-Phage Approach for Investigating Caspase Specificity. J Protein Chem 23, 413–425 (2004). https://doi.org/10.1023/B:JOPC.0000039555.92058.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000039555.92058.51

Navigation