Skip to main content
Log in

Crystal Structure of the Pig Pancreatic α-Amylase Complexed with ρ-Nitrophenyl-α-D-Maltoside-Flexibility in the Active Site

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The X-ray structure analysis of a crystal of pig pancreatic α-amylase soaked with a ρ-nitrophenyl-α-D-maltoside (pNPG2) substrate showed a pattern of electron density corresponding to the binding of a ρ-nitrophenol unit at subsite −2 of the active site. Binding of the product to subsite −2 after hydrolysis of the pNPG2 molecules, may explain the low catalytic efficiency of the hydrolysis of pNPG2 by PPA. Except a small movement of the segment from residues 304–305 the typical conformational changes of the “flexible loop” (303–309), that constitutes the surface edge of the substrate binding cleft, were not observed in the present complex structure. This result supports the hypothesis that significant movement of the loop may depend on aglycone site being filled (Payan and Qian, J. Protein Chen. 22: 275, 2003). Structural analyses have shown that pancreatic α-amylases undergo an induced conformational change of the catalytic residue Asp300 upon substrate binding; in the present complex the catalytic residue is observed in its unliganded orientation. The results suggest that the induced reorientation is likely due to the presence of a sugar unit at subsite −1 and not linked to the closure of the flexible surface loop. The crystal structure was refined at 2.4 Å resolution to an R factor of 17.55% (R free factor of 23.32%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ajandouz, E. H., Abe, J., Svensson, B., and Marchis-Mouren, G. (1992). Biochim. Biophys. Acta. 1159: 193–202.

    Google Scholar 

  • Ajandouz, E. H. and Marchis-Mouren, G. J. (1995). Carbohydr. Res. 268: 267–277.

    Google Scholar 

  • Brayer, G. D., Luo, Y., and Withers, S. G. (1995). Protein Sci. 4: 1730–1742.

    Google Scholar 

  • Brayer, G. D., Sidhu, G., Maurus, R., Rydberg, E. H., Braun, C., Wang, Y., Nguyen, N. T., Overall, C. M., and Withers, S. G. (2000). Biochemistry 39: 4778–4791.

    Google Scholar 

  • BrÝnger, A. T. (1992). Nature 355: 472–475.

    Google Scholar 

  • BrÝnger, A. T. (1996). XPLOR verion 3.843 Manural. New Haven, Connecticut: Yale University Press.

    Google Scholar 

  • BrÝnger, A. T., Kuriyan, J., and Karplus, M. (1987). Science 35: 458–460.

    Google Scholar 

  • Coutinho, P. M. and Henrissat, B. (1999) in Recent Advances in Carbohydrate Bioengineering., ed. Gilbert, H. J., Davies, G. J., Henrissat, B. and Svensson, B. (The Royal Society, Cambridge).

    Google Scholar 

  • Davies, G. J., Wilson K. S., and Henrissat, B. (1997). Biochem. J. 321: 557–559.

    Google Scholar 

  • Ishikawa, K., Matsui, I., and Honda, K. (1990). Biochemistry 29: 7119–7123.

    Google Scholar 

  • Koshland, D. E. (1953). Biol. Rev. 28: 416–436.

    Google Scholar 

  • Larson, S. B., Greenwood, A., Cascio, D., Day, J., and McPherson, A. (1994). J. Mol. Biol. 235: 1560–1584.

    Google Scholar 

  • MacGregor, A. W., Morgan, J. E., and MacGregor, E. A. (1992). Carbohydr. Res. 227: 301–313.

    Google Scholar 

  • McCarter, J. D. and Withers, S. G. (1994). Curr. Opin. Struct. Biol. 4: 885–892.

    Google Scholar 

  • Nahoum, V., Roux, G., Anton, V., Rougeé, P., Puigserver, A., Bischoff, H., Henrissat, B., and Payan, F. (2000). Biochem. J. 346: 201–208.

    Google Scholar 

  • Otwinowski, Z. (1993). Oscillation Data Reduction Program. In: Sawye, L., Isaacs, N., and Burley, S., Eds. Proceedings of the CCP4 study weekend: data collection and processing. Warrington, United Kingdom: Daresbury Laboratory. 56–62 (2).

  • Payan, F. and Qian, M. (2003). J. Protein Chem. 22: 275–284.

    Google Scholar 

  • Qian, M., Haser, R., Buisson, G., Dúee, E., and Payan, F. (1994). Biochemistry 33: 6284–6294.

    Google Scholar 

  • Qian, M., Haser, R., and Payan, F. (1993) J.Mol.Biol. 231: 785–799.

    Google Scholar 

  • Qian, M., Haser, R, and Payan, F. (1995) Protein Sci. 4: 747–755.

    Google Scholar 

  • Qian, M., Nahoum, V., Bonicel, J., Bischoff, H., Henrissat, B., and Payan, F. (2001). Biochemistry 40: 7700–7709.

    Google Scholar 

  • Qian, M., Spinelli, S., Driguez, H., and Payan, F. (1997). Protein Sci. 6: 2285–2296.

    Google Scholar 

  • Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G. D., and Levine, M. J. (1996). Acta Crystallog. D52: 435–446.

    Google Scholar 

  • Ramasubbu, N., Ragunath, C., and Mishra, P. J. (2003). J. Mol. Biol. 325: 1061–1078.

    Google Scholar 

  • Read, R. J. (1986). Acta Crystallogr. A42: 140–149.

    Google Scholar 

  • Robyt, J. F. and French, D. (1970). J. Biol. Chem. 45: 3917–3927.

    Google Scholar 

  • Roussel, A. and Cambillau, C. (1989). in Silicon graphic geometry partner directory, (Fall, 1989), Silicon Graphics, Mountain View CA., 77–78.

    Google Scholar 

  • Rydberg, E. H., Li, C., Maurus, R., Overall, C. M., Brayer, G.D., and Withers, S. G. (2002). Biochemistry 41: 4492–4502.

    Google Scholar 

  • Uitdehaag, J. C. M., Mosi, R., Kalk, K-H., Van der Veen, B. A., Dijkhuizen, L., Withers, S. G., and Dijkstra, B. W. (1999) Nature Structural biology. 6: 432–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, H., Payan, F. & Qian, M. Crystal Structure of the Pig Pancreatic α-Amylase Complexed with ρ-Nitrophenyl-α-D-Maltoside-Flexibility in the Active Site. J Protein Chem 23, 379–387 (2004). https://doi.org/10.1023/B:JOPC.0000039552.94529.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000039552.94529.95

Navigation