Skip to main content
Log in

Conformational States of Trifluoroacetic Acid–Treated Cytochrome c in the Presence of Salts and Alcohols

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

We have carried out a systematic investigation of salts- and alcohols-induced conformational alterations on the trifluoroacetic acid (TFA)-treated ferricytochrome c by soret absorption spectroscopy, far UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-8-naphthalene sulfonate (ANS) binding. TFA induces the unfolding of native cytochrome c obtained from horse heart leading to loss of secondary structure. The addition of increasing concentration of salts and alcohols leads to increase in MRE value at 222 and 208 nm indicating an increase in the α-helical content leading to formation of compact dimensional structure. Cytochrome c is a heme protein in which the resonance energy of tryptophan is transferred to heme resulting in quenched tryptophan fluorescence. Addition of alcohols leads to increase in tryptophan and ANS fluorescence. The tryptophan and ANS fluorescence in case of salts shows decreased fluorescence intensity. TFA-induced unfolded cytochrome c showed the soret absorption maximum at 394 nm. However, an intermediate state in presence of alcohols and salts showed the absorption maxima at 398 nm and 402 nm, respectively. Among all the salts and alcohols studied, K3Fe(CN)6 and butanol were found to be most effective as examined by the above-mentioned spectroscopic techniques. The order of effectiveness of alcohols was found to be butanol > propanol > ethanol > methanol. The following effective trend in the case of salts was obtained: K3Fe(CN)6 > K2SO4>KClO4 > KCl. These results suggest that alcohols induce an intermediate with molten globule–like conformation on the TFA unfolded state, whereas salts induce a refolded intermediate approaching native-like conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A., Madhusudana, K. P., and Bhakuni, V. (2000). Biochim. Biophys. Acta 1480: 201–210.

    PubMed  Google Scholar 

  • Antalik, M., and Sedlak, E. (1999). Biochim. Biophys. Acta 1434: 347–355.

    PubMed  Google Scholar 

  • Barrick, D., and Baldwin, R. L. (1993). Protein Sci. 2: 869–876.

    PubMed  Google Scholar 

  • Chen, Y. H., Yang, J. T., and Martinez, H. M. (1972). Biochemistry. 11: 4120–4131.

    PubMed  Google Scholar 

  • Dyson, H. J., and Beattie, J. K. (1982). J. Biol. Chem. 257: 2267–2273.

    PubMed  Google Scholar 

  • Davis Searles, P. R., Morar, A. S., Saunderes, A. J., Eri, D. A., and Pielak, G. J. (1998). Biochemistry 37: 17048–17053.

    PubMed  Google Scholar 

  • Fink, A. L., Calciano, C. T., Goto, Y., Kurotsv, T., and Palleros, D. R. (1994). Biochemistry 33: 12504–12511.

    PubMed  Google Scholar 

  • Gekko, H., and Ito, H. (1990). J. Biochem. 109: 572–577.

    Google Scholar 

  • Gekko, K., and Timasheff, S. N. (1981). Biochemistry 20: 4677–4686.

    PubMed  Google Scholar 

  • Gupta, P., Khan, R. H., and Saleemuddin, M. (2003). Arch Biochem. Biophys. 413: 199–206.

    PubMed  Google Scholar 

  • Goto, Y., and Nishikiori, S. (1991). J. Mol. Biol. 222: 679–686.

    PubMed  Google Scholar 

  • Goto, Y., Calciano, L. J., and Fink, A. L. (1990a). Proc. Natl. Acad. Sci. U. S. A. 87: 573–577.

    PubMed  Google Scholar 

  • Goto, Y., Takahashi, N. and Fink, A. L. (1990b) Biochemistry 29: 3480–3488.

    PubMed  Google Scholar 

  • Hamada, D., Hoshino, M., Kataoka, M., Fink, A. L., and Goto, Y. (1993). Biochemistry 32: 10351–10358.

    PubMed  Google Scholar 

  • Hiramatsu, K., and Yang, J. T. (1983). Biochim. Biophys. Acta 743: 106–114.

    PubMed  Google Scholar 

  • Haq, S. K., Rasheedi, S., and Khan, R. H. (2002). Eur. J. Biochem. 269: 47–52.

    PubMed  Google Scholar 

  • Haq, S. K., Ahmad, M. F., and Khan, R. H. (2003). Biochem. Biophys. Res. Comm. 303: 685–692.

    PubMed  Google Scholar 

  • Hagihara, Y., Tan, Y., and Goto, Y. (1994). J. Mol. Biol. 237: 336–348.

    PubMed  Google Scholar 

  • Jeng, M. F., Englander, S. W., Elove, G. A., Wand, A. J., and Roder, H. (1990). Biochemistry 29: 10433–10437.

    PubMed  Google Scholar 

  • Jordan, T., Eads, J. C., and Spiro, T. G. (1995). Protein Sci. 4: 716–728.

    PubMed  Google Scholar 

  • Khan, F., Khan, R. H., and Muzammil, S. (2000). Biochim. Biophys. Acta 1481: 229–236.

    PubMed  Google Scholar 

  • Kataoka, M., Hagihara, Y., Mihara, K., and Goto, Y. (1993). J. Mol. Biol. 229: 591–596.

    PubMed  Google Scholar 

  • Kamatari, Y. O., Takashi, K., Kataoka, M., and Akasaka, K. (1996). J. Mol. Biol. 259: 512–523.

    PubMed  Google Scholar 

  • Marmorino, J. L., and Pielak, G. J. (1995). Biochemistry 34: 3140–3143.

    PubMed  Google Scholar 

  • Marmorino, J. L., Lehti, M., and Pielak, G. J. (1998). J. Mol. Biol. 275: 379–388.

    PubMed  Google Scholar 

  • Naseem, F., Khan, R. H., Haq, S. K., and Naeem, A. (2003). Biochim. Biophys. Acta 1649: 164–170.

    PubMed  Google Scholar 

  • Ptitsyn, O. B. (1995). Adv. Protein Chem. 47: 83–229.

    PubMed  Google Scholar 

  • Ptitsyn, O. B. (1996). Nat. Struct. Biol. 3: 488–490.

    PubMed  Google Scholar 

  • Pascher, T., Winkler, J. P., and Grey, H. B. (1996). Science 271: 1558–1560.

    PubMed  Google Scholar 

  • Santucci, R., Bongiovanni, C., Mei, G., Ferri, T. P., Polizio, F., and Desideri, A. (2000). Biochemistry 39: 12632–12638.

    PubMed  Google Scholar 

  • Santucci, R., Polizio, F., and Desideri, A. (1999). Biochemie 81: 745–751.

    Google Scholar 

  • Stryer, L. (1968). Science 162: 526–540.

    PubMed  Google Scholar 

  • Williams, G., Moore, G. R., and R. J. P. (1985). Comments Inorg. Chem IV: 55–98.Author: Please Supply Missing Information

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naeem, A., Akram, M. & Khan, R.H. Conformational States of Trifluoroacetic Acid–Treated Cytochrome c in the Presence of Salts and Alcohols. J Protein Chem 23, 185–195 (2004). https://doi.org/10.1023/B:JOPC.0000026414.34366.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000026414.34366.33

Navigation