Advertisement

Visualization-Based Analysis for a Mixed-Inhibition Binary PBPK Model: Determination of Inhibition Mechanism

  • Kristin K. Isaacs
  • Marina V. Evans
  • Thomas R. Harris
Article

Abstract

A physiologically based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based sensitivity and identifiability analyses of the model were performed to determine the conditions under which four inhibitory parameters describing inhibitor binding could be estimated. The sensitivity methods were used to reduce the 4-parameter estimation problem into two distinct 2-parameter problems. The inhibitory parameters were then estimated from multiple closed-chamber gas-uptake experiments using graphical methods. The estimated values of the four inhibitory parameters predicted that chloroform and TCE interact in a competitive manner. Based on the model analysis, we present recommendations for the design of experiments for determination of inhibition mechanism in binary chemical mixtures. We assert that a thorough analysis of the parameter-dependent sensitivity and identifiability characteristics can be used to plan efficient experimental protocols for the quantitative analysis of inhalation pharmacokinetics.

PBPK models sensitivity analysis identifiability analysis binary exposures trichloroethylene chloroform mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Tardif, S. Laparé, K. Krishnan, and J. Brodeur. Physiologically-based modeling of the toxicokinetic interaction between toulene and m-xylene in the rat. Toxicol. Appl. Pharmacol. 120:266–273 (1993).CrossRefPubMedGoogle Scholar
  2. 2.
    R. Tardif, G. Charest-Tardif, J. Brodeur, and K. Krishnan. Physiologically-based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Toxicol. Appl. Pharmacol. 144:120–134 (1997).CrossRefPubMedGoogle Scholar
  3. 3.
    M. E. Andersen, M. L. Gargas, H. J. Clewell, and K. M. Severyn. Quantitative evaluation of the metabolic interactions between trichloroethylene and 1, 1-dichloroethylene in vivo using gas-uptake methods. Toxicol. Appl. Pharmacol. 89:149–157 (1987).CrossRefPubMedGoogle Scholar
  4. 4.
    I. D. Dobrev, M. E. Andersen, and S. H. Yang. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas-uptake studies and PBPK modeling. Arch. Toxicol. 75:134–144 (2001).CrossRefPubMedGoogle Scholar
  5. 5.
    J. C. Ramsey and M. E. Andersen. A physiologically-based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73:159–175 (1984).CrossRefPubMedGoogle Scholar
  6. 6.
    M. V. Evans, W. D. Crank, H. Yang, and J. E. Simmons. Applications of sensitivity analysis to a physiologically-based pharmacokinetic model for carbon tetrachloride in rats. Toxicol. Appl. Pharmacol. 128:36–44 (1994).CrossRefPubMedGoogle Scholar
  7. 7.
    R. A. Corley, A. L. Mendrala, F. A. Smith, D. A. Staats, M. L. Gargas, R. B. Conolly, M. E. Andersen, and R. H. Reitz. Development of a physiological based pharmacokinetic model for chloroform. Toxicol. Appl. Pharmacol. 103:512–527 (1990).CrossRefPubMedGoogle Scholar
  8. 8.
    C. E. Dallas, J. M. Gallo, R. Ramanathan, S. Muralidhara, and J. V. Bruckner. Physiological pharmacokinetic modeling of inhaled trichloroethylene in rats. Toxicol. Appl. Pharmacol. 110:303–314 (1991).PubMedGoogle Scholar
  9. 9.
    L. H. Lash, J. W. Fisher, J. C. Lipscomb, and J. C. Parker. Metabolism of trichloroethylene. Environ. Health. Perspect. 108(Suppl 2):177–200 (2000).Google Scholar
  10. 10.
    Toxicological Review of Chloroform. U.S. EPA. Washington, DC. EPA/635/R-01/001. (October, 2001).Google Scholar
  11. 11.
    A. A. Constan, C. S. Sprankle, J. M. Peters, G. L. Kedderis, J. I. Everitt, B. A. Wong, F. L. Gonzalez, and B. E. Butterworth. Metabolism of chloroform by cytochrome P450 2E1 is required for induction of toxicity in the liver, kidney, and nose of male mice. Toxicol Appl Pharmacol. 160(2):120–126 (1999).CrossRefPubMedGoogle Scholar
  12. 12.
    T. Palmer. Understanding Enzymes. (Wiley: London, 1981).Google Scholar
  13. 13.
    M. L. Gargas, M. E. Andersen, and H. J. III Clewell. A physiologically based simulation approach for determining metabolic parameters from gas-uptake data. Toxicol. Appl. Pharmacol. 86:341–352, 1986.CrossRefPubMedGoogle Scholar
  14. 14.
    S. Bosan and T. R. Harris. Visualization-based analysis of multiparameter models using environment for n-dimensional model analysis, Comp. Biomed. Res. 30:171–187, (1997).CrossRefGoogle Scholar
  15. 15.
    F. R. Haselton, R. J. Roselli, R. E. Parker, and T. R. Harris, An effective-diffusivity model of pulmonary capillary exchange: general theory, limiting cases, and sensitivity analysis, Math. Biosci. 70:237–63 (1984).CrossRefGoogle Scholar
  16. 16.
    J. Beck and K. Arnold. Parameter Estimation in Engineering and Science (New York: Wiley: 1977) pp. 19–23.Google Scholar
  17. 17.
    Behavior and Determination of Volatile Organic Compounds in Soil. U.S. EPA. Washington, DC. EPA/600/R-93/140 (May, 1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Kristin K. Isaacs
    • 2
  • Marina V. Evans
    • 1
  • Thomas R. Harris
    • 2
  1. 1.Experimental Toxicology Division National Health and Environmental Effects Research Laboratory, U.S. EPA, Mail DropUSA
  2. 2.Department of Biomedical Engineering, Station B, BoxVanderbilt UniversityNashvilleUSA.

Personalised recommendations