Journal of Polymers and the Environment

, Volume 12, Issue 1, pp 35–42 | Cite as

Biodegradable Soy-Based Plastics: Opportunities and Challenges

  • S. N. Swain
  • S. M. Biswal
  • P. K. Nanda
  • Padma L. NayakEmail author


Today's plastics are designed with little consideration for their ultimate disposability or the effect of the resources (feedstocks) used in making them. This has resulted in mounting worldwide concerns over the environmental consequences of such materials when they enter the mainstream after their intended uses. This led to the concept of designing and engineering new biodegradable materials–materials that have the performance characteristics of today's materials but that undergo biodegradation along with other organic waste to soil humic materials. Hence, the production of biodegradable materials from annually renewable agricultural feedstocks has attracted attention in recent years. Agricultural materials such as starches and proteins are biodegradable and environmentally friendly. Soybean is a good candidate for manufacturing a large number of chemicals, including biodegradable plastics, as it is abundantly available and cheap. Soy protein concentrate, isolate, or flakes could be compounded with synthetic biodegradable plastics such as polycaprolactone or poly (lactic acid) to make molded products or edible films or shopping bags and make the environment cleaner and greener.

Biodegradable soybean protein, films molded products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Kinsella (1979) Am. Oil. Chem. Soc. 56, 242.Google Scholar
  2. 2.
    D. J. Salt, R. B. Leslie, P. J. Lillford, and P. Durnil (1982) Eur. J. Appl. Microbiol. Biotechnol. 14, 1144–1148.Google Scholar
  3. 3.
    W. Wolf (1970) J. Agri. Food Chem. 18(6), 969.Google Scholar
  4. 4.
    N. Catsimpoolas, J. A. Kenney, E. W. Meyer, and B. F. Szuhaj (1971) J. Sci. Food. Agri. 22, 448.Google Scholar
  5. 5.
    P. L. Nayak (1999) J. Macromol. Sc. Rev. Macromol. Chem. Phys. C39, 481–505.Google Scholar
  6. 6.
    B. Cuq, N. Gontard, and S. Guilbert (1998) Cereal Chem. 75, 1.Google Scholar
  7. 7.
    J. J. Kester and O. Fennema (1986) Food Technol. 40, 47–59.Google Scholar
  8. 8.
    S. Guilbert and B. Biquet (1978) in L'emballa des Denness Alimentaires (G. Bureaee, Ed.), Technique Documentation Lavoisier, Apria, Paris.Google Scholar
  9. 9.
    I. G. Donhowe and O. Fennema (1994) Edible Films and Coatings J. M. Krochta, E. A. Baldwin, and M. O. Nisperos-Carriedo, Eds.), Technomic Publishing, Lancaster, PA.Google Scholar
  10. 10.
    B. Cuq, N. Gentard, and S. Guilbert (1997) Polymer 38, 4071–4078.Google Scholar
  11. 11.
    E. R. Lieberman and S. G. Gilbert (1973) J. Polym. Sci. 41, 33–43.Google Scholar
  12. 12.
    I. G. Donhowe and O. Fennema (1993) J. Food Process. Preserv. 17, 247.Google Scholar
  13. 13.
    A. Gennadios, C. L. Weller, and R. F. Testia, (1993) Trans. ASAE. 36, 465.Google Scholar
  14. 14.
    N. Gontard, S. Guilbert, and J. L. Cuq (1993) J. Food. Sci. 58, 206.Google Scholar
  15. 15.
    T. H. McHugh and J. M. Krochta (1994) J. Agric. Food Achem. 42, 841–845.Google Scholar
  16. 16.
    H. J. Park, J. M. Weller, P. J. Vergano, and R. F. Testin (1994) Trans. ASAE. 37, 1281–1285.Google Scholar
  17. 17.
    B. Cuq, N. Gontard, J. L. Cuq, and S. Guilbert (1997) J. Agric. Food Chem. 45, 622.Google Scholar
  18. 18.
    R. T. Szyperski and J. P. Gibbons (1963) Paint Varnish Prod. 53, 65–67.Google Scholar
  19. 19.
    C. A. Kumins (1965) J. Polym. Sci. 10, 1–9.Google Scholar
  20. 20.
    E. R. Lieberman and S. G. Gilbert (1973) Polym. Sci. 41, 63.Google Scholar
  21. 21.
    R. Oswa and T. P. Walsh (1993) J. Agric. Food Chem. 41, 704–707.Google Scholar
  22. 22.
    C. Marquie, A. M. Tessier, C. Aymard, and S. Guilbert (1997) J. Agric. Food Chem. 45, 922–926.Google Scholar
  23. 23.
    L. C. Wu and R. P. Bates (1972) J. Food Sci. 37, 36.Google Scholar
  24. 24.
    S. J. Circle, E. W. Meyer, and R. W. Rheology (1964) Cereal Chem. 41, 157.Google Scholar
  25. 25.
    S. Okamoto (1978) Cereal Foods world 23, 256.Google Scholar
  26. 26.
    S. Guilbert (1986) in Food Packaging and Preservation. Theory and Practice (M. Mathouthi, Ed.), Elsevier Applied Science, London.Google Scholar
  27. 27.
    A. Gennadios, C. L. Weller, and R. F. Tesin (1990) Paper no. 90-;6505 presented at the 1990 International Winter Meeting, American Society of Agricultural Engineering, Chicago, IL, December 18-;21.Google Scholar
  28. 28.
    A. E. Holley and C. L. Weller. Unpublished data.Google Scholar
  29. 29.
    V. M. Ghorpade, H. Ali, A. Gennadios, and M. A. Hanna (1995) Trans. ASAE 38, 1805.Google Scholar
  30. 30.
    V. M. Ghorpade, A. Gennadios, M. A. Hanna, and C. L. Weller (1995) Cereal. Chem. 72, 559.Google Scholar
  31. 31.
    Anonymous (1941) Time, August, 25, 1941, p. 63.Google Scholar
  32. 32.
    G. H. Brother and L. L. McKinney (1940) Ind. Eng. Chem. 32, 1002.Google Scholar
  33. 33.
    I. Paetau, C. Z. Chen, and J. Jane (1994) I&EC, 33, 1821.Google Scholar
  34. 34.
    I. Paetau, C. Z. Chen, and J. Jane (1994) J. Environ. Polym. Degradation 2, 211.Google Scholar
  35. 35.
    S. Wang, H. J. Sue, and J. Jane (1996) J. M. S. Pure Appl. Chem. A33 (5), 557.Google Scholar
  36. 36.
    H. J. Sue, S. Wang, and J. L. Jane (1997) Polymer 38, 5035.Google Scholar
  37. 37.
    R. W. Strauss (1988) Protein Binders in Paper and Paperboard Coating, Tappi, Monograph No. 36.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • S. N. Swain
    • 1
  • S. M. Biswal
    • 1
  • P. K. Nanda
    • 1
  • Padma L. Nayak
    • 1
    Email author
  1. 1.Biodegradable Polymer Research Laboratory, Department of ChemistryRavenshaw CollegeCuttack-India

Personalised recommendations