Skip to main content
Log in

Design and Implementation of a Calibrated Store and Forward Imaging System for Teledermatology

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The paper presents a computer-based imaging system aiming to support telemedicine examination sessions in dermatology. Many studies have proved the inadequacy of general practitioners to diagnose successfully common dermatological diseases; some of them may prove fatal if not diagnosed at their early stages (e.g., melanoma). Thus the need for telemedicine systems customized for dermatology becomes obvious for distant rural areas, where dermatological care is usually provided by general doctors. We treat technological issues such as image acquisition, camera calibration, illumination, data transmission, and data compression, and propose a store and forward architecture for image transmission. We also include a study of the effect that image compression quality factor has in the diagnostic value of the skin digital images, along with some initial results and conclusions from the pilot use of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ramsey, D. L., and Fox, A. B., The ability of primary care physicians to recognize the common dermatoses. Arch.Dermatol. 117:620–622, 1981.

    Google Scholar 

  2. Pariser, R. J., and Pariser, D. M., Primary care physicians errors in handling cutaneous disorders. J.Am.Acad.Dermatol. 17:239–245, 1987.

    Google Scholar 

  3. Norton, S. A., Burdick, A. E., Phillips, C. M., and Berman, B., Teledermatology and underserved populations. Arch.Dermatol. 133(7):819, Feb. 1997.

    Google Scholar 

  4. Martin, A. W., Nguyen, F. Q., and Risica, P. M., Patient and referring provider satisfaction with teledermatology. J.Am.Acad.Dermatol. 47(1):68–72, 2002.

    Google Scholar 

  5. Burdick, A. G., and Berman, B., Teledermatology. Adv.Dermatol. 12:19–45, 1997.

    Google Scholar 

  6. Warnicki, J. W., Justice, J., and Justice, M. K., Digital database for clinical ophthalmology and telemedicine. J.Am.Soc.Ophthalmic Registered Nurses 26(3):81–83, 2001.

    Google Scholar 

  7. Pavlopoulos, S., and Koutsouris, D., An image processing and management system for radiology with telemedicine services. Future Generation Comput.Syst. 15:293–299, 1999.

    Google Scholar 

  8. Heer, I. M., Strauss, A., Muller-Egloff, S., and Hasbargen, U., Telemedicine in ultrasound: New Solutions. Ultrasound Med.Biol. 27(9):1239–1243, 2001

    Google Scholar 

  9. Burdick, A. E., Berman, B., in Bashshur, R. L., Sander, T. H., and Shannon, G. W. (eds.), Telemedicine: Theory and Practice. Book Chapter 8: Teledermatology, Charles CThomas Publisher Limited, Spring-field. Illinois USA, 1997.

    Google Scholar 

  10. Maglogiannis, I., and Kosmopoulos, D., A digital image acquisition system for skin lesions. SPIE Proc.Med.Imaging 2003, Image Percept.Observer Performance Technol.Assess. pp. 337- 346, San Diego, USA.

  11. Collins, J., Lighting design & layout. Telemed.Today 26- 28, Sept./Oct. 96.

  12. Young, J., and Gerbrands, L. V., Fundamentals of Image Processing, Delft University of Technology, Delft, the Netherlands, 1998.

    Google Scholar 

  13. Hung, P. C., Colorimetric calibration in electronic imaging devices using a look-up table model and interpolations. J.Electron.Imaging 2:53–61, 1993.

    Google Scholar 

  14. Haeghen, Y., Naeyaert, J., Lemahieu, I., and Philips, W., An imaging system with calibrated color image acquisition for use in dermatology. IEEE Transact.Med.Imaging 19:7, July 2000.

    Google Scholar 

  15. Lee, R. L., Colorimetric calibration of a video digitizing system: Algorithm and applications. Color Res.Appl. 3(13):180–186, 1988.

    Google Scholar 

  16. Finlayson, G. D., and Drew, M. S., Constrained least-squares regression in color spaces. J.Electron.Imaging 6(4):484–493, 1997.

    Google Scholar 

  17. Trussell, H. J., Application of set theoretic methods to color systems. Color Res.Appl. 16(1):31–41, 1991.

    Google Scholar 

  18. GretagMacbeth Corporation, Retrieved June 2003 from http://www.gretagmacbeth.com

  19. International Color Consortium, Retrieved June 2003 from http://www.color.org

  20. Berns, R. S., Methods for characterizing CRT displays. Displays 16(4):173–182, 1996.

    Google Scholar 

  21. MacDonald, L. W., Developments in color management systems. Displays 16(4):203–211, 1996.

    Google Scholar 

  22. Crowether, J. B., and Poropatich, R., Telemedicine in the U.S. Army, case reports from Somalia and Croatia. Telemed.J. 1:73–80, 1995.

    Google Scholar 

  23. Retrieved June 2003 from http://www.lucent.com/press/0395/950309.gba.html

  24. Saha, S., Image Compression—From DCT to Wavelets: A Review, ACM Crossroads, USA, 2000 (http://www.acm.org/crossroads/).

  25. Ahmed, N., Natarajan, T., and Rao, K. R., Discrete cosine transform. IEEE Trans.Comput. C-23:90–93, 1974.

    Google Scholar 

  26. Cohen, A., Daubechies, I., and Feauveau, J. C., Biorthogonal bases of compactly supported wavelets. Comm.Pure Appl.Math. XLV:485–560, 1992.

    Google Scholar 

  27. Vetterli, M., and Kovacevic, J., Wavelets and Subband Coding, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglogiannis, I. Design and Implementation of a Calibrated Store and Forward Imaging System for Teledermatology. Journal of Medical Systems 28, 455–467 (2004). https://doi.org/10.1023/B:JOMS.0000041172.70027.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMS.0000041172.70027.a0

Navigation