Skip to main content
Log in

Relaxed High Resolution Schemes for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Relaxed, essentially non-oscillating schemes for nonlinear conservation laws are presented. Exploiting the relaxation approximation, it is possible to avoid the nonlinear Riemann problem, characteristic decompositions, and staggered grids. Nevertheless, convergence rates up to fourth order are observed numerically. Furthermore, a relaxed, piecewise hyperbolic scheme with artificial compression is constructed. Third order accuracy of this method is proved. Numerical results for two-dimensional Riemann problems in gas dynamics are presented. Finally, the relation to central schemes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Artebrant, R., and Schroll, H. J. (2002). High-resolution Riemann-solver-free methods for conservation laws. To appear in Proceedings of HYP-2002, Pasadena, USA.

  2. Dawson, C., and Kirby, R. (2000). High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22(6), 2256–2281.

    Article  Google Scholar 

  3. Friedrichs, K. O., and Lax, P. D. (1971). Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. 68, 1686–1688.

    Google Scholar 

  4. Godunov, S. K. (1959). A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–295.

    Google Scholar 

  5. Gottlieb, S., Shu, C. W., and Tadmor, E. (2001). Strong stability-preserving high order time discretization methods. SIAM Rev. 43, 89–112.

    Article  Google Scholar 

  6. Harten, A., Osher, S., Engquist, B., and Chakravarthy, S. (1987). Some results on unifomly high-order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2, 347–377.

    Article  Google Scholar 

  7. Harten, A. (1978). The artificial compression method for computation of shocks and contact discontinuities III. Self-adjusting hybrid schemes. Math. Comp. 32(142), 363–389.

    Google Scholar 

  8. Jameson, A., and Schmidt, W. (1985). Some recent developments in numerical methods for transonic flows. Comput. Methods Appl. Mech. Eng. 51, 467–493.

    Article  Google Scholar 

  9. Jin, S., and Xin, Z. P. (1995). The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–277.

    Google Scholar 

  10. Kröner, D. (1997). Numerical Schemes for Conservation Laws, Advances in Numerical Mathematics, Wiley-Teubner, Chichester & Stuttgart.

    Google Scholar 

  11. Kurganov, A., and Tadmor, E. (2002). Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differential Equations 18(5), 584–608.

    Article  Google Scholar 

  12. Kurganov, A., and Tadmor, E. (2000). Newhigh-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160, 214–282.

    Google Scholar 

  13. LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge.

    Google Scholar 

  14. Li, X.-G., Yu, X.-J., and Chen, G.-N. (2002). The third order relaxation schemes for hyperbolic conservation laws.J. Comp. Appl. Math. 138, 93–108.

    Article  Google Scholar 

  15. Lorenz, J., and Schroll, H. J. (1999). Hyperbolic systems with relaxation: Characterization of stiff well-posedness and asymptotic expansions. J. Math. Anal. Appl. 235, 497–532.

    Article  Google Scholar 

  16. Marquina, A. (1994). Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15(4), 892–915.

    Google Scholar 

  17. Natalini, R. (1996). Convergence to equilibrium for the relaxation approximations of conservation laws. Comm. Pure Appl. Math. 49, 795–823.

    Article  Google Scholar 

  18. Nessyahu, H., and Tadmor, E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463.

    Article  Google Scholar 

  19. Qiu, J., and Shu, C. W. (2002). On the construction, comparison, and local characteristic decomposition of high-order central WENO schemes. J. Comput. Phys. 183, 187–209.

    Article  Google Scholar 

  20. Rusanov, V. V. (1961). Calculation of interaction of non-steady shock waves with obstacles. J. Comp. Math. Phys. USSR 1, 267–279.

    Google Scholar 

  21. Schroll, H. J. (2002). High resolution relaxed upwind schemes in gasdynamics. J. Sci. Comp. 17(1-4), 599–607.

    Article  Google Scholar 

  22. Schulz-Rinne, C. W. (1993). Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88.

    Google Scholar 

  23. Schulz-Rinne, C. W., Collins, J. P., and Glaz, H. M. (1993). Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414

    Google Scholar 

  24. Shu, C.-W. (1998). Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., and Quarteroni, A. (eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Vol. 1697, Springer, Berlin, pp. 325–432.

    Google Scholar 

  25. Shu, C. W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78.

    Article  Google Scholar 

  26. Sjögreen, B., and Yee, H. C. (2002). Analysis of high order difference methods for multiscale complex compressible flows. To appear in Proceedings of HYP-2002, Pasadena,USA.

  27. Tadmor, E. (1984). Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp. 43, 369–381.

    Google Scholar 

  28. Tadmor, E. (1998). Approximate solutions of nonlinear conservation laws. In Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., and Quarteroni, A. (eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Vol. 1697, Springer, Berlin, pp. 1–149.

    Google Scholar 

  29. Toro, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin.

    Google Scholar 

  30. Yee, H. C., and Sjögreen, B. (2002). Designing adaptive lowdissipative high order schemes. To appear in Proceedings of ICCFD2, Sydney, Australia.

  31. Yong, W. A. (2001). Basic aspects of hyperbolic relaxation systems. In Freistühler, H., and Szepessy, A. (eds.), Advances in the Theory of Shock Waves, Birkhäuser, Boston, pp. 259–305.

    Google Scholar 

  32. www.math.ucla.edu/~tadmor/centralstation/

  33. www.math.ntnu.no/~andreas/fronttrack/gas/sb/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroll, H.J. Relaxed High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing 21, 251–279 (2004). https://doi.org/10.1023/B:JOMP.0000035624.42048.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000035624.42048.db

Navigation