Skip to main content
Log in

Is Sequence Heterochrony an Important Evolutionary Mechanism in Mammals?

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. A. (1992). Stages of development and sequence of bone formation in the little brown bat, Myotis lucifigus. J. Mammal. 73: 160–167.

    Google Scholar 

  • Alberch, P. (1985). Problems with the interpretation of developmental sequences. Syst. Zool. 34: 46–58.

    Google Scholar 

  • Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48: 107–118.

    PubMed  Google Scholar 

  • Amrine-Madsen, H., Koepfli, K. P., Wayne, R. K., and Springer, M. S. (2003). A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol. 28: 225–240.

    Article  PubMed  Google Scholar 

  • Bard, J. B. L. (1977). A unity underlying the different zebra striping patterns. J. Zool. 183: 527–539.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Jeffery, J. E., Coates, M. I., and Richardson, M. K. (2002). From Haeckel to event-pairing: The evolution of developmental sequences. Theory Biosci. 121: 297–320.

    Google Scholar 

  • Bryden, M. M., Evans, H. E., and Binns, W. (1972). Embryology of the sheep. I. Extraembryonic membranes and the development of body form. J. Morphol. 138: 169–186.

    PubMed  Google Scholar 

  • Corneli, P. S. (2002). Complete mitochondrial genomes and eutherian evolution. J. Mammal. Evol. 9: 281–305.

    Google Scholar 

  • de Jong, W. W., van Dijk, M. A., Poux, C., Kappe, G., van Rheede, T., and Madsen, O. (2003). Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. Mol. Phylogenet. Evol. 28: 328–340.

    PubMed  Google Scholar 

  • de Lange, D., Jr., and Nierstrasz, H. F. (1932). Tabellarische Übersicht der Entwicklung von Tupaia javanica Horsf, A. Oosthoek Verlag A.G., Utrecht.

    Google Scholar 

  • Duellman, W. E., and Trueb, L. (1994). Biology of Amphibians, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Galis, F. (1999). Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 285: 19–26.

    PubMed  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and Phylogeny, Belknap Press, Cambridge, MA.

    Google Scholar 

  • Gould, S. J. (1982). Change in developmental timing as a mechanism of macroevolution. In: Evolution and Development, J. T. Bonner, ed., pp. 333–346, Springer-Verlag, New York.

    Google Scholar 

  • Gribnau, A. A. M., and Geijsberts, L. G. M. (1981). Developmental Stages in the Rhesus Monkey (Macaca mulatta), Springer-Verlag, Berlin.

    Google Scholar 

  • Harman, M. T., and Prickett, M. (1932). The development of the external form of the guinea-pig (Cavia cobaya) between the ages of eleven days and twenty days of gestation. Amer. J. Anat. 49: 351–378.

    Google Scholar 

  • Harman, M. T., and Prickett Dobrovolny, M. (1933). The development of the external form of the guinea-pig (Cavia cobaya) between the ages of 21 days of and 35 days of gestation. J. Morphol. 54: 493–519.

    Google Scholar 

  • Heape, W. (1883a). The development of the mole (Talpa europea). The formation of the germinal layers and early development of the meduallry groove and notochord. Q. J. Microscop. Sci. 23: 412–452.

    Google Scholar 

  • Heape, W. (1883b). The development of the mole (Talpa europea). Stage E to J. Q. J. Microscop. Sci. 26: 123–163.

    Google Scholar 

  • Henneberg, B. (1937). Normentafel zur Entwicklungsgeschichte der Wanderratte (Rattus norvegicus Erxleben), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Hubrecht, A. A. W., and Keibel, F. (1907). Normentafel zur Entwicklungsgeschichte des Koboldmaki (Tarsius spectrum) und des Plumplori (Nycticebus tardigradus), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Huisman, F. J., and de Lange, D., Jr. (1937). Tabellarische Übersicht der Entwicklung von Manis javanica Desm, A. Oosthoek Verlag A.G., Utrecht.

    Google Scholar 

  • Jacobfeuerborn, H. (1908). Die intrauterine Ausbildung der äuβeren Körperform des Igels (Erinaceus europaeus L.) mit Berücksichtigung der Entwicklung der wichtigeren inneren Organe. Z. Wiss. Zool. 91: 382–420.

    Google Scholar 

  • Jeffery, J. E., Bininda-Emonds, O. R. P., Coates, M. I., and Richardson, M. K. (2002a). Analyzing evolutionary patterns in vertebrate embryonic development. Evol. Dev. 4: 292–302.

    PubMed  Google Scholar 

  • Jeffery, J. E., Richardson, M. K., Coates, M. I., and Bininda-Emonds, O. R. P. (2002b). Analyzing developmental sequences within a phylogenetic framework. Syst. Biol. 51: 478–491.

    PubMed  Google Scholar 

  • Jerison, H. J. (1973). Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Keibel, F. (1897). Normentafel zur Entwicklungsgeschichte des Schweines (Sus scrofa domesticus), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Keibel, F., ed. (1897–1938). Normentafeln zur Entwicklungsgeschichte der Wirbelthiere, Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Keibel, F., and Abraham, K. (1900). Normentafel zur Entwicklungsgeschichte des Huhnes (Gallus domesticus), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Keibel, F., and Elze, C. (1908). Normentafel zur Entwicklungsgeschichte des Menschen, Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Langman, J. (2000). Langman's Medical Embryology, 8th ed., Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789.

    PubMed  Google Scholar 

  • Luo, Z.-X., Crompton, A. W., and Sun, A.-L. (2001). A new mammaliform from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.

    PubMed  Google Scholar 

  • Mabee, P. M., and Trendler, T. A. (1996). Development of the cranium and paired fins in Betta splendens (Teleosti: Percomorpha): Intraspecific variation and interspecific comparisons. J. Morphol. 227: 249–287.

    Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    PubMed  Google Scholar 

  • McCrady, E., Jr. (1938). The Embryology of the Opossum, The Wistar Institute of Anatomy and Biology, Philadelphia.

    Google Scholar 

  • McKinney, M. L., and McNamara, K. J. (1991). Heterochrony: The Evolution of Ontogeny, Plenum Press, New York.

    Google Scholar 

  • Minot, C. S., and Taylor, E. (1905). Normal Plates of the Development of the Rabbit (Lepus cuniculus L.) Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    PubMed  Google Scholar 

  • Murphy, W. J., Eizirik, E., O'Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, O. A., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351.

    PubMed  Google Scholar 

  • Nowak, R. M. (1999). Walker's Mammals of the World, 6th ed., The John Hopkins University Press, Baltimore.

    Google Scholar 

  • Nunn, C. L., and Smith, K. K. (1998). Statistical analyses of developmental sequences: The craniofacial region in marsupial and placental mammals. Amer. Nat. 152: 82–101.

    Google Scholar 

  • O'Rahilly, R., and Müller, F. (1987). Developmental Stages in Human Embryos, Carnegie Institute of Washington, Meriden, CT.

    Google Scholar 

  • Peter, K. (1904). Normentafel zur Entwicklungsgeschichte der Zauneidechse (Lacerta agilis), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Raff, R. A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal From, University of Chicago Press, Chicago.

    Google Scholar 

  • Richardson, M. K. (1999). Vertebrate evolution: The developmental origins of adult variation. BioEssays 21: 604–613.

    PubMed  Google Scholar 

  • Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A., and Hanken, J. (1998). Somite number and vertebrate evolution. Development 125: 151–160.

    PubMed  Google Scholar 

  • Richardson, M. K., and Oelschläger, H. A. (2002). Time, pattern and heterochrony: A study of hyperphalangy in the dolphin embryo flipper. Evol. Dev. 4: 435–444.

    PubMed  Google Scholar 

  • Sakurai, T. (1906). Normentafel zur Entwicklungsgeschichte des Rehes (Cervus capreolus), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Sánchez-Villagra, M. R. (2002). Comparative patterns of postcranial ontogeny in therian mammals: an analysis of relative timing of ossification events. J. Exp. Zool. (Mol. Dev. Evol.) 294: 264–273.

    Google Scholar 

  • Sanderson, M. J., and Donoghue, M. J. (1989). Patterns of variation in levels of homoplasy. Evolution 43: 1781–1795.

    Google Scholar 

  • Scott, J. P. (1937). The embryology of the guinea pig I. A table of normal development. Amer. J. Anat. 60: 397–432.

    Google Scholar 

  • Shubin, N. H., and Alberch, P. (1986). A morphogenetic approach to the origin and basic organisation of the tetrapod limb. In: Evolutionary Biology, M. K. Hecht, B. Wallace, and G. I. Prance, eds., pp. 319–387, Plenum Press, New York.

    Google Scholar 

  • Smith, K. K. (1996). Integration of craniofacial structures during development in mammals. Amer. Zool. 36: 70–79.

    Google Scholar 

  • Smith, K. K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution 51: 1663–1678.

    Google Scholar 

  • Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 1056–1061.

    PubMed  Google Scholar 

  • Sterba, O., Klima, M., and Schildger, B. (2000). Embryology of Dolphins, Springer, Berlin.

    Google Scholar 

  • Swofford, D. L., and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Math. Biosci. 87: 199–229.

    Article  Google Scholar 

  • Theiler, K. (1989). The House Mouse: Atlas of Embryonic Development, Springer Verlag, New York.

    Google Scholar 

  • Thomas, J. W., et al. (70 other authors). (2003). Comparative analysis of multi-species sequences from targeted genomic regions. Nature 424: 788–793.

    PubMed  Google Scholar 

  • Velhagen, W. A. (1997). Analyzing developmental sequences using sequence units. Syst. Biol. 46: 204–210.

    PubMed  Google Scholar 

  • Vogel, P. (1973). Vergleichende Untersuchung zum Ontogenesemodus einheimischer Soriciden (Crocidura russula, Sorex araneus und Neomys fodiens). Rev. Suisse Zool. 79: 1201–1332.

    Google Scholar 

  • Völker-Brünn, O. (1922). Normentafel zur Entwicklungsgeschichte des Ziesels (Spermophilus citillus), Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48: 1–5.

    PubMed  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. Amer. Zool. 36: 36–43.

    Google Scholar 

  • Wake, M. H. (1997). Amphibian locomotion in evolutionary time. Zoology 100: 141–151.

    Google Scholar 

  • Wanek, N., Muneoka, K., Holler-Dinsmore, G., Burton, R., and Bryant, S. V. (1989). A staging system for mouse limb development. J. Exp. Zool. 249: 41–49.

    PubMed  Google Scholar 

  • Wheeler, Q. D. (1990). Ontogeny and character phylogeny. Cladistics 6: 225–268.

    Google Scholar 

  • Wilson, D. E., and Reeder, D. M., eds. (1993). Mammal Species of the World: Ataxonomic and Geographic Reference, Smithsonian Institution Press, Washington.

    Google Scholar 

  • Wolpert, L. (1994). The evolutionary origin of development: Cycles, patterning, privilege and continuity.Development Supplement 79–84.

  • Yasui, K. (1992). Embryonic development of the house shrew (Suncus murinus). I. Embryos at stages 9 and 10 with 1 to 12 pairs of somites. Anat. Embryol. 186: 49–65.

    PubMed  Google Scholar 

  • Yasui, K. (1993). Embryonic development of the house shrew (Suncus murinus). II. Embryos at stages 11 and 12 with 13 to 29 pairs of somites, showing limb bud formation and closed cephalic neural tube. Anat. Embryol. 187: 45–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bininda-Emonds, O.R.P., Jeffrey, J.E. & Richardson, M.K. Is Sequence Heterochrony an Important Evolutionary Mechanism in Mammals?. Journal of Mammalian Evolution 10, 335–361 (2003). https://doi.org/10.1023/B:JOMM.0000019775.39109.d2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMM.0000019775.39109.d2

Navigation