Skip to main content
Log in

Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The development and progression of aggressive breast cancer is characterized by genomic instability leading to multiple genetic defects, phenotypic diversity, chemoresistance, and poor outcome. Centrosome abnormalities have been implicated in the origin of chromosomal instability through the development of multipolar mitotic spindles. Breast tumor centrosomes display characteristic structural abnormalities, termed centrosome amplification, including: increase in centrosome number and volume, accumulation of excess pericentriolar material, supernumerary centrioles, and inappropriate phosphorylation of centrosome proteins. In addition, breast tumor centrosomes also show functional abnormalities characterized by inappropriate centrosome duplication during the cell cycle and nucleation of unusually large microtubule arrays. These observations have important implications for understanding the mechanisms underlying genomic instability and loss of cell polarity in cancer. This review focuses on the coordination of the centrosome, DNA, and cell cycles in normal cells and their deregulation resulting in centrosome amplification and chromosomal instability in the development and progression of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wilson E. B. (1925). The Cell in Development and Heredit y, 3rd edn. Macmillan, New York.

    Google Scholar 

  2. M. Kirschner and T. Mitchison (1986). Beyond self-assembly: From microtubules to morphogenesis. Cell 45:329-342.

    Google Scholar 

  3. M. Bornens (2002). Centrosome composition and micro-tubule anchoring mechanisms. Curr. Opin. Cell Biol. 14:25- 34.

    Google Scholar 

  4. R. E. Palazzo (2003). Centrosome and spindle pole body dynamics: A review of the EMBO/EMBL Conference on Centrosomes and Spindle Pole Bodies, Heidelberg, September 13-17, Cell Motil. Cytoskeleton 54:148-154.

    Google Scholar 

  5. S. J. Doxsey (2001). Centrosomes as command centres for cellular control. Nat. Cell Biol. 3:E105-E108.

    Google Scholar 

  6. G. Sluder and E. H. Hinchcliffe (2000). The coordination of centrosome reproduction with nuclear events during the cell cycle. Curr. Top. Dev. Biol. 49:267-289.

    Google Scholar 

  7. J. L. Salisbury (2003). Centrosomes: Coiled-coils organize the cell center. Curr. Biol. 13:R88–R90.

    Google Scholar 

  8. J. L. Salisbury (2003). Centrosome size is controlled by centriolar SAS-4. Trends Cell Biol. 13:340-343.

    Google Scholar 

  9. J. L. Salisbury (2004). Centrosomes: sfi1p and centrin unravel a structural riddle. Curr. Biol. 14:R27–R29.

    Google Scholar 

  10. J. S. Andersen, C. J. Wilkinson, T. Mayor, P. Mortensen, E. A. Nigg, and M. Mann (2003). Proteomic characteriza-tion of the human centrosome by protein correlation profiling. Nature 426:570-574.

    Google Scholar 

  11. S. Dutcher (2001). Motile organelles: The importance of specific tubulin isoforms. Curr. Biol. 11:R419-R22.

    Google Scholar 

  12. S. K. Dutcher (2001). The tubulin fraternity: Alpha to eta. Curr. Opin. Cell Biol. 13:49-54.

    Google Scholar 

  13. D. Mazia (1987). The chromosome cycle and the centrosome cycle in the mitotic cycle. Int. Rev. Cytol. 100:49-92.

    Google Scholar 

  14. Y. Bobinnec, A. Khodjakov, L. M. Mir, C. L. Rieder, B. Edde, and M. Bornens (1998). Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143:1575-1589.

    Google Scholar 

  15. M. Kirkham, T. Muller-Reichert, K. Oegema, S. Grill, and A. A. Hyman (2003). SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:575-587.

    Google Scholar 

  16. S. Leidel and P. Gonczy (2003). SAS-4 is essential for centro-some duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4:431-439.

    Google Scholar 

  17. S. J. Doxsey, P. Stein, L. Evans, P. D. Calarco, and M. Kirschner (1994). Pericentrin, a highly conserved cen-trosome protein involved in microtubule organization. Cell 76:639-650.

    Google Scholar 

  18. J. B. Dictenberg, W. Zimmerman, C. A. Sparks, A. Young, C. Vidair, Y. Zheng, et al(1998). Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141:163- 174.

    Google Scholar 

  19. T. Ohta, R. Essner, J.-H. Ryu, R. E. Palazzo, Y. Uetake, and R. Kuriyama (2002). Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156:87-100.

    Google Scholar 

  20. G. Keryer, R. M. Rios, B. F. Landmark, B. Skalhegg, S. M. Lohmann, and M. Bornens (1993). A high-affinity binding protein for the regulatory subunit of cAMP-dependent protein kinase II in the centrosome of human cells. Exp. Cell Res. 204:230-240.

    Google Scholar 

  21. O. Witczak, B. S. Skalhegg, G. Keryer, M. Bornens, K. Tasken, T. Jahnsen, et al(1999). Cloning and characteriza-tion of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. EMBO J. 18:1858-1868.

    Google Scholar 

  22. V. Bouckson-Castaing, M. Moudjou, D. J. Ferguson, S. Mucklow, Y. Belkaid, G. Milon, et al(1996). Molecular characterisation of ninein, a new coiled-coil protein of the centrosome. J. Cell Sci. 109:179-190.

    Google Scholar 

  23. A. Young, J. B. Dictenberg, A. Purohit, R. Tuft, and S. J. Doxsey (2000). Cytoplasmic dynein-mediated assembly of pericentrin and gamma tubulin onto centrosomes. Mol. Biol. Cell 11:2047-2056.

    Google Scholar 

  24. D. Diviani, L. K. Langeberg, S. J. Doxsey, and J. D. Scott (2000). Pericentrin anchors protein kinase A at the centro-some through a newly identified RII-binding domain. Curr. Biol. 10:417-420.

    Google Scholar 

  25. J. V. Kilmartin (2003). Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162:1211-1221.

    Google Scholar 

  26. A. T. Baron, V. J. Suman, E. Nemeth, and J. L. Salisbury (1994). The pericentriolar lattice of PtK2 cells exhibits temperature and calcium-modulated behavior. J. Cell Sci. 107:2993-3003.

    Google Scholar 

  27. A. T. Baron, T. M. Greenwood, C. W. Bazinet, and J. L. Salisbury (1992). Centrin is a component of the peri-centriolar lattice. Biol. Cell 76:383-388.

    Google Scholar 

  28. D. R. Kellogg (1989). Centrosomes. Organizing cytoplasmic events. Nature 340:99-100.

    Google Scholar 

  29. I. R. Adams and J. V. Kilmartin (2000). Spindle pole body duplication: A model for centrosome duplication? Trends Cell Biol. 10:329-335.

    Google Scholar 

  30. D. Wheatley (1982). The Centriole: A Central Enigma of Cell Biolog y, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  31. A. Khodjakov and C. L. Rieder (2001). Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153:237-242.

    Google Scholar 

  32. M. Piel, J. Nordberg, U. Euteneuer, and M. Bornens (2001). Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550-1553.

    Google Scholar 

  33. A. Khodjakov, C. L. Rieder, G. Sluder, G. Cassels, O. Sibon, and C.-L. Wang (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158:1171-1181.

    Google Scholar 

  34. W. F. Marshall, Y. Vucica, and J. L. Rosenbaum (2001). Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol. 11:308-317.

    Google Scholar 

  35. W. F. Marshall (1999). No centriole, no centrosome. Trends Cell Biol. 9:94.

    Google Scholar 

  36. E. H. Hinchcliffe, C. Li, E. A. Thompson, J. L. Maller, and G. Sluder (1999). Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851-854.

    Google Scholar 

  37. K. R. Lacey, P. K. Jackson, and T. Stearns (1999). Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. U.S.A. 96:2817-2822.

    Google Scholar 

  38. Y. Matsumoto, K. Hayashi, and E. Nishida (1999). Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9:429-432.

    Google Scholar 

  39. A. D'Assoro, R. Busby, K. Suino, E. Delva, G. Almodovar-Mercado, H. Johnson, et al. (in press). Genotoxic stress leads to centrosome amplification in breast cancer cell lines that have an inactive G1/S cell cycle checkpoint. Oncogene 23:4068-4075.

  40. W. S. el-Deiry, T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J.M. Trent,et al. (1993). WAF1, a potential me-diator of p53 tumor suppression. Cell 75:817-825.

    Google Scholar 

  41. J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi,and S. J. Elledge (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805- 816.

    Google Scholar 

  42. E. Bailly, J. Pines, T. Hunter, and M. Bornens (1992). Cytoplasmic accumulation of cyclin B1 in human cells: Association with a detergent-resistant compartment and with the centrosome. J. Cell Sci. 101:529-545.

    Google Scholar 

  43. A. Debec and C. Montmory (1992). Cyclin B is associated with centrosomes in Drosophila mitotic cells. Biol. Cell 75:121-126.

    Google Scholar 

  44. F. Verde, J. C. Labbe, M. Doree, and E. Karsenti (1990). Regulation of microtubule dynamics by cdc2 protein ki-nase in cell-free extracts of Xenopus eggs. Nature 343:233- 238.

    Google Scholar 

  45. F. Verde, M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler (1992). Control of microtubule dynamics and length by cyclin A-and cyclin B-dependent kinases in Xeno-pus egg extracts. J. Cell Biol. 118:1097-1108.

    Google Scholar 

  46. S. M. Keezer and D. M. Gilbert (2002). Sensitivity of the origin decision point to specific inhibitors of cellular signaling and metabolism. Exp. Cell Res. 273:54-64.

    Google Scholar 

  47. M. Okuda (2002). The role of nucleophosmin in centrosome duplication. Oncogene 21:6170-6174.

    Google Scholar 

  48. A. M. Fry, T. Mayor, and E. A. Nigg (2000). Regulating centrosomes by protein phosphorylation. Curr. Top. Dev. Biol. 49:291-312.

    Google Scholar 

  49. D. D. Vandre and G. G. Borisy (1989). Anaphase onset and dephosphorylation of mitotic phosphoproteins occur concomitantly. J. Cell Sci. 94:245-258.

    Google Scholar 

  50. D. D. Vandre, Y. Feng, and M. Ding (2000). Cell cycle-dependent phosphorylation of centrosomes: Localization of phosphopeptide specific antibodies to the centrosome. Microsc. Res. Tech. 49:458-466.

    Google Scholar 

  51. P. N. Rao, J. Y. Zhao, R. K. Ganju, and C. L. Ashorn (1989). Monoclonal antibody against the centrosome. J. Cell Sci. 93:63-69.

    Google Scholar 

  52. W. Lutz, W. L. Lingle, D. McCormick, T. M. Greenwood, and J. L. Salisbury (2001). Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J. Biol. Chem. 276:20774-20780.

    Google Scholar 

  53. W. L. Lingle, W. H. Lutz, J. N. Ingle, N. J. Maihle, and J. L. Salisbury (1998). Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. U.S.A. 95:2950-2955.

    Google Scholar 

  54. H. Zhou, J. Kuang, L. Zhong, W. L. Kuo, J. W. Gray, A. Sahin, et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20:189-193.

    Google Scholar 

  55. Y. Miyoshi, K. Iwao, C. Egawa, and S. Noguchi (2001). Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int. J. Cancer 92:370-373.

    Google Scholar 

  56. H. Katayama, H. Zhou, Q. Li, M. Tatsuka, and S. Sen (2001). Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and Protein Phosphatase 1 through mitotic cell division cycle. J. Biol. Chem. 276:46219- 46224.

    Google Scholar 

  57. P. Meraldi, J. Lukas, A. Fry, J. Bartek, and E. Nigg (1999). Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat. Cell Biol. 1:88-93.

    Google Scholar 

  58. R. Balczon, L. Bao, W. E. Zimmer, K. Brown, R. P. Zinkowski, and B. R. Brinkley (1995). Dissociation of cen-trosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130:105-115.

    Google Scholar 

  59. K. Fukasawa, T. Choi, R. Kuriyama, S. Rulong, and G. F. Vande Woude (1996). Abnormal centrosome amplification in the absence of p53. Science 271:1744-1747.

    Google Scholar 

  60. K. L. Murphy and J. M. Rosen (2000). Mutant p53 and ge-nomic instability in a transgenic mouse model of breast cancer. Oncogene 19:1045-1051.

    Google Scholar 

  61. P. Tarapore, Y. Tokuyama, H. F. Horn, and K. Fukasawa (2001). Difference in the centrosome duplication regulatory activity among p53 “hot spot” mutants: Potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene 20:6851-6863.

    Google Scholar 

  62. C. Mantel, S. E. Braun, S. Reid, O. Henegariu, L. Liu, G. Hangoc, et al. (1999). p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390-1398.

    Google Scholar 

  63. P. Tarapore, H. F. Horn, Y. Tokuyama, and K. Fukasawa (2001). Direct regulation of the centrosome duplication cy-cle by the p53-p21Waf1/Cip1 pathway. Oncogene 20:3173- 3184.

    Google Scholar 

  64. J. G. Mussman, H. F. Horn, P. E. Carroll, M. Okuda, P. Tarapore, L. A. Donehower, et al. (2000). Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635- 1646.

    Google Scholar 

  65. L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel, et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215-221.

    Google Scholar 

  66. J. R. Eshleman, G. Casey, M. E. Kochera, W. D. Sedwick, S. E. Swinler, M. L. Veigl, et al. (1998). Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Onco-gene 17:719-725.

    Google Scholar 

  67. C. Lengauer, K. Kinzler, and B. Vogelstein (1997). Genetic instability in colorectal cancers. Nature 386:623-627.

    Google Scholar 

  68. W. L. Lingle, S. L. Barrett, V. C. Negron, A. B. D'Assoro, K. Boeneman, W. Liu, et al. (2002). Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl. Acad. Sci. U.S.A. 99:1978-1983.

    Google Scholar 

  69. C. X. Deng and S. G. Brodie (2000). Roles of BRCA1 and its interacting proteins. Bioessays 22:728-737.

    Google Scholar 

  70. L. C. Hsu and R. L. White (1998). BRCA1 is associated with the centrosome during mitosis. Proc. Natl. Acad. Sci. U.S.A. 95:12983-12988.

    Google Scholar 

  71. X. Xu, Z. Weaver, S. P. Linke, C. Li, J. Gotay, X. W. Wang, et al. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3:389-395.

    Google Scholar 

  72. G. G. Maul, D. E. Jensen, A. M. Ishov, M. Herlyn, and F. J. Rauscher 3rd. (1998). Nuclear redistribution of BRCA1 during viral infection. Cell Growth Differ. 9:743-755.

    Google Scholar 

  73. A. Tutt, A. Gabriel, D. Bertwistle, F. Connor, H. Paterson, J. Peacock, et al. (1999). Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9:1107-1110.

    Google Scholar 

  74. M. B. Kastan, Q. Zhan, W. S. el-Deiry, F. Carrier, T. Jacks, W. V. Walsh, et al. (1992). A mammalian cell cycle check-point pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587-597.

    Google Scholar 

  75. X. W. Wang, Q. Zhan, J. D. Coursen, M. A. Khan, H. U. Kontny, L. Yu, et al. (1999). GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. U.S.A. 96:3706-3711.

    Google Scholar 

  76. M. C. Hollander, M. S. Sheikh, D. V. Bulavin, K. Lundgren, L. Augeri-Henmueller, R. Shehee, et al. (1999). Genomic instability in Gadd45a-deficient mice. Nat. Genet. 23:176-184.

    Google Scholar 

  77. B. R. Brinkley (2001). Managing the centrosome numbers game: From chaos to stability in cancer cell division. Trends Cell Biol. 11:18-21.

    Google Scholar 

  78. L. M. Gustafson, L. L. Gleich, K. Fukasawa, J. Chadwell, M. A. Miller, P. J. Stambrook, et al. (2000). Centrosome hyperamplification in head and neck squamous cell carcinoma: A potential phenotypic marker of tumor aggressiveness. Laryngoscope 110:1798-1801.

    Google Scholar 

  79. K. K. Kuo, N. Sato, K. Mizumoto, N. Maehara, H. Yonemasu, C. G. Ker, et al. (2000). Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Hepatology 31:59-64.

    Google Scholar 

  80. G. A. Pihan, A. Purohit, J. Wallace, H. Knecht, B. Woda, P. Quesenberry, et al. (1998). Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58:3974-3985.

    Google Scholar 

  81. N. Sato, K. Mizumoto, M. Nakamura, K. Nakamura, M. Kusumoto, H. Niiyama, et al. (1999). Centrosome abnormalities in pancreatic ductal carcinoma. Clin. Cancer Res. 5:963-970.

    Google Scholar 

  82. R. G. Weber, J. M. Bridger, A. Benner, D. Weisenberger, V. Ehemann, G. Reifenberger, et al. (1998). Centrosome amplification as a possible mechanism for numerical chromosome aberrations in cerebral primitive neuroectodermal tumors with TP53 mutations. Cytogenet Cell Genet 83:266- 269.

    Google Scholar 

  83. A. B. D'Assoro, W. L. Lingle, and J. L. Salisbury (2002). Centrosome amplification and the development of cancer. Oncogene 21:6146-6153.

    Google Scholar 

  84. W. L. Lingle and J. L. Salisbury (1999). Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am. J. Pathol. 155:1941-1951.

    Google Scholar 

  85. P. Meraldi, R. Honda, and E. A. Nigg (2002). Aurora-A over-expression reveals tetraploidization as a major route to cen-trosome amplification in p53 -/- cells. EMBO J. 21:483-492.

    Google Scholar 

  86. J. L. Salisbury, W. L. Lingle, R. A. White, L. E. Cordes, and S. Barrett (1999). Microtubule nucleating capacity of centro-somes in tissue sections. J. Histochem. Cytochem. 47:1265- 1274.

    Google Scholar 

  87. A. B. D'Assoro, S. L. Barrett, C. Folk, V. C. Negron, K. Boeneman, and R. C. Busby, et al. (2002). Amplified centrosomes in breast cancer: A potential indicator of tumor aggressiveness. Breast Cancer Res. Treat. 75:25-34.

    Google Scholar 

  88. J. Mendelin, M. Grayson, T. Wallis, and D. W. Visscher (1999). Analysis of chromosome aneuploidy in breast. carcinoma progression by using fluorescence in situ hybridization. Lab. Invest. 79:387-393.

    Google Scholar 

  89. M. Tirkkonen, M. Tanner, R. Karhu, A. Kallioniemi, J. Isola, and O. P. Kallioniemi (1998). Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21:177-184.

    Google Scholar 

  90. C. Lengauer, K. W. Kinzler, and B. Vogelstein (1998). Genetic instabilities in human cancers. Nature 396:643- 649.

    Google Scholar 

  91. T. Boveri (1914). Zur Frage der Entstehung maligner Tumore n, Fischer Verlag, Jena, Germany (1929 English translation by M. Boveri reprinted as The Origin of Malignant Tumors, The Williams and Wilkins Co., Baltimore).

    Google Scholar 

  92. G. A. Pihan, A. Purohit, J. Wallace, R. Malhotra, L. Liotta, and S. J. Doxsey (2001). Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61:2212-2219.

    Google Scholar 

  93. C. W. Elston and I. O. Ellis (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 19:403-410.

    Google Scholar 

  94. R. Engers and H. E. Gabbert (2000). Mechanisms of tumor metastasis: Cell biological aspects and clinical implications. J. Cancer Res. Clin. Oncol. 126:682-692.

    Google Scholar 

  95. P. L. Fitzgibbons, D. L. Page, D. Weaver, A. D. Thor, D. C. Allred, G. M. Clark, et al. (2000). Prognostic factors in breast cancer. College of American Pathologists Consensus Statement Arch. Pathol. Lab. Med. 124:966-978.

    Google Scholar 

  96. D. L. Page, R. Gray, D. C. Allred, L. G. Dressler, A. K. Hatfield, S. Martino, et al. (2001). Prediction of node-negative breast cancer outcome by histologic grading and S-phase analysis by flow cytometry: An Eastern Cooperative Oncology Group Study (2192). Am.J.Clin.Oncol. 24:10-18.

    Google Scholar 

  97. S. Sigurdsson, S. K. Bodvarsdottir, K. Anamthawat-Jonsson, M. Steinarsdottir, J. G. Jonasson, H. M. Ogmundsdottir, et al. (2000). p53 abnormality and chromosomal instability in the same breast tumor cells. Cancer Genet. Cytogenet. 121:150- 155.

    Google Scholar 

  98. C. Lavarino, V. Corletto, A. Mezzelani, G. Della Torre, C. Bartoli, C. Riva, et al. (1998). Detection of TP53 mutation, loss of heterozygosity and DNA content in fine-needle aspirates of breast carcinoma. Br.J.Cancer77:125-130.

    Google Scholar 

  99. T. Sauer, K. Beraki, P. W. Jebsen, E. Ormerod, and O. Naess (1998). Numerical aberrations of chromosome 17 in interphase cell nuclei of breast carcinoma cells: Lack of correla-tion with abnormal expression of p53, neu and nm23 protein. APMIS 106:921-927.

    Google Scholar 

  100. S. Chiba, M. Okuda, J. G. Mussman, and K. Fukasawa (2000). Genomic convergence and suppression of centrosome hyper-amplification in primary p53 -/- cells in prolonged culture. Exp. Cell Res. 258:310-321.

    Google Scholar 

  101. P. E. Carroll, M. Okuda, H. F. Horn, P. Biddinger, P. J. Stambrook, L. L. Gleich, et al. (1999). Centrosome hyperamplification in human cancer: Chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935-1944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salisbury, J.L., D'Assoro, A.B. & Lingle, W.L. Centrosome Amplification and the Origin of Chromosomal Instability in Breast Cancer. J Mammary Gland Biol Neoplasia 9, 275–283 (2004). https://doi.org/10.1023/B:JOMG.0000048774.27697.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000048774.27697.30

Navigation