Skip to main content
Log in

A Crucial Role for Fibroblast Growth Factor Signaling in Embryonic Mammary Gland Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The fibroblast growth factors (Fgfs) represent a large group of intercellular signaling molecules that mediate their effects by binding to a class of cell surface enzymes belonging to the receptor tyrosine kinase family (FgfRs). In vitro, Fgf signaling can induce potent mitogenic, motogenic, and angiogenic cellular responses, and has been associated with a multitude of biological processes. The development of gene targeting and transgenic strategies has provided unequivocal evidence for the key involvement of Fgf signaling in mammalian developmental processes. In this review we highlight recent findings that demonstrate a critical requirement for Fgf signaling in the induction and development of the embryonic mammary gland. Furthermore, we briefly discuss the potential of Fgfs to act as oncogenic factors in mammary neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Daniel CW, Smith GH. The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 1999;4:3-8.

    Google Scholar 

  2. Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996;1:5-19.

    PubMed  Google Scholar 

  3. Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia 1999;4:9-19.

    PubMed  Google Scholar 

  4. DunbarME, Wysolmerski JJ. Mammaryductal and alveolar development: lesson learned from genetically manipulated mice. Microsc Res Tech 2001;52:163-70.

    PubMed  Google Scholar 

  5. Silberstein GB. Tumour-stromal interactions. Role of the stroma in mammary development. Breast Cancer Res 2001;3:218-23.

    PubMed  Google Scholar 

  6. Propper AY. Wandering epithelial cells in the rabbit embryo milk line. A preliminary scanning electron microscope study. Dev Biol 1978;67:225-31.

    PubMed  Google Scholar 

  7. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, Kato S, Dickson C, Thiery JP, Bellusci S. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 2002;129:53-60.

    PubMed  Google Scholar 

  8. Sakakura T. Mammary embryogenesis. In Neville MC, Daniel CW, editors. The Mammary Gland-Development, Regulation and Function. New York: Plenum Press; 1987. p. 37-66.

    Google Scholar 

  9. Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S. Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn 2004;229:349-56.

    PubMed  Google Scholar 

  10. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003;71:1-17.

    PubMed  Google Scholar 

  11. Cunha GR, Hom YK. Role of mesenchymal-epithelial interactions in mammary gland development. JMammary Gland Biol Neoplasia 1996;1:21-35.

    Google Scholar 

  12. Balinsky B. On the pre-natal growth of the mammary gland rudiment in the mouse. J Anat 1950;84:227-35.

    PubMed  Google Scholar 

  13. Hogan BL. Morphogenesis. Cell 1999;96:225-33.

    PubMed  Google Scholar 

  14. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol 2003;262:195-205.

    PubMed  Google Scholar 

  15. Kratochwil K. In vitro analysis of the hormonal basis for the sexual dimorphism in the embryonic development of the mouse mammary gland. J Embryol Exp Morphol 1971;25:141-53.

    PubMed  Google Scholar 

  16. Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik SI, Gibson-Brown JJ, Cebra-Thomas J, Bollag RJ, Silver LM, Papaioannou VE. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development.DevDyn 1996;206:379-90.

    Google Scholar 

  17. Christiansen JH, Dennis CL, WickingCA, Monkley SJ, Wilkinson DG, Wainwright BJ.Murine Wnt-11 and Wnt-12 have temporally and spatially restricted expression patterns during embryonic development. Mech Dev 1995;51:341-50.

    PubMed  Google Scholar 

  18. Dunbar ME, Dann PR, RobinsonGW, Hennighausen L, Zhang JP, Wysolmerski JJ. Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development 1999;126:3485-93.

    PubMed  Google Scholar 

  19. LewisMT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP, Daniel CW. Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 1999;126:5181-93.

    PubMed  Google Scholar 

  20. Phippard DJ, Weber-Hall SJ, Sharpe PT, NaylorMS, Jayatalake H, Maas R, Woo I, Roberts-Clark, D, Francis-West PH, Liu YH, Maxson R, Hill RE, Dale TC. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development 1996;122:2729-37.

    PubMed  Google Scholar 

  21. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000;24:391-5.

    PubMed  Google Scholar 

  22. van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedi R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice.Genes Dev 1994;8:2691-703.

    PubMed  Google Scholar 

  23. Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE. Rescue of the parathyroid hormonerelated protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 1998;125:1285-94.

    PubMed  Google Scholar 

  24. Davenport TG, Jerome-Majewska LA, Papaioannou VE. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 2003;130:2263-73.

    PubMed  Google Scholar 

  25. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993;60:1-41.

    PubMed  Google Scholar 

  26. McKeehan WL, Wang F, Kan M. The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 1998;59:135-76.

    PubMed  Google Scholar 

  27. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271:15292-7.

    PubMed  Google Scholar 

  28. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000;7:165-97.

    PubMed  Google Scholar 

  29. Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson JD, Murison JG. Identification of a new fibroblast growth factor receptor, FGFR5. Gene 2001;271:171-82.

    PubMed  Google Scholar 

  30. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2:REVIEWS3005.

    Google Scholar 

  31. Hajihosseini MK, Wilson S, De Moerlooze L, Dickson C. A splicing switch and gain-of-function mutation in FgfR2-IIIc hemizygotes causes Apert/Pfeiffer-syndrome-like phenotypes. Proc Natl Acad Sci U S A 2001;98:3855-60.

    PubMed  Google Scholar 

  32. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000;127:483-92.

    PubMed  Google Scholar 

  33. Revest JM, Spencer-Dene B, Kerr K, De Moerlooze L, Rosewell I, Dickson C. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 2001;231:47-62.

    PubMed  Google Scholar 

  34. Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 2001;167:1954-61.

    PubMed  Google Scholar 

  35. Peters KG, Werner S, Chen G, Williams LT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992;114:233-43.

    PubMed  Google Scholar 

  36. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, Lonai P. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993;158:475-86.

    PubMed  Google Scholar 

  37. Mason IJ, Fuller-Pace F, Smith R, Dickson C. FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev 1994;45:15-30.

    PubMed  Google Scholar 

  38. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA. Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 1989;245:752-5.

    PubMed  Google Scholar 

  39. Yamasaki M, Miyake A, Tagashira S, Itoh N. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem 1996;271:15918-21.

    PubMed  Google Scholar 

  40. Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci 1999;4:D165-77.

    PubMed  Google Scholar 

  41. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64:841-8.

    PubMed  Google Scholar 

  42. Lin X, Buff EM, Perrimon N, Michelson AM. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999;126:3715-23.

    PubMed  Google Scholar 

  43. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000;22:108-12.

    PubMed  Google Scholar 

  44. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL.An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 1993;259:1918-21.

    PubMed  Google Scholar 

  45. Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S, Bernfield M. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 2000;25:329-32.

    PubMed  Google Scholar 

  46. Pedchenko VK, ImagawaW. Pattern of expression of the KGF receptor and its ligands KGF and FGF-10 during postnatal mouse mammary gland development. Mol Reprod Dev 2000;56:441-7.

    PubMed  Google Scholar 

  47. Coleman-Krnacik S, Rosen JM. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol 1994;8:218-29.

    PubMed  Google Scholar 

  48. Jackson D, Bresnick J, Rosewell I, Crafton T, Poulsom R, Stamp G, Dickson C. Fibroblast growth factor receptor signalling has a role in lobuloalveolar development of the mammary gland. J Cell Sci 1997;110 (Pt 11):1261-8.

    PubMed  Google Scholar 

  49. Imagawa W, Cunha GR, Young P, Nandi S. Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium. Biochem Biophys Res Commun 1994;204:1165-9.

    PubMed  Google Scholar 

  50. Ulich TR, Yi ES, Cardiff R, Yin S, Bikhazi N, Biltz R, Morris CF, Pierce GF. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor. Am J Pathol 1994;144:862-8.

    PubMed  Google Scholar 

  51. Petiot A, Conti FJ, Grose R, Revest JM, Hodivala-Dilke KM, Dickson C.Acrucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development 2003;130:5493-501.

    PubMed  Google Scholar 

  52. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S. Fgf10 is essential for limb and lung formation. Nat Genet 1999;21:138-41.

    PubMed  Google Scholar 

  53. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000;277:643-9.

    PubMed  Google Scholar 

  54. Sakaue H, Konishi M, Ogawa W, Asaki T, Mori T, Yamasaki M, Takata M, Ueno H, Kato S, Kasuga M, Itoh N. Requirement of fibroblast growth factor 10 in development of white adipose tissue. Genes Dev 2002;16:908-12.

    PubMed  Google Scholar 

  55. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 1996;10:165-75.

    PubMed  Google Scholar 

  56. Nakatake Y, Hoshikawa M, Asaki T, Kassai Y, Itoh N. Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle. Biochim Biophys Acta 2001;1517:460-3.

    PubMed  Google Scholar 

  57. Beyer TA, Werner S, Dickson C, Grose R. Fibroblast growth factor 22 and its potential role during skin development and repair. Exp Cell Res 2003;287:228-36.

    PubMed  Google Scholar 

  58. Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 1996;10:1382-94.

    Google Scholar 

  59. Bei M, Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 1998;125:4325-33.

    PubMed  Google Scholar 

  60. Dickson C, Spencer-Dene B, Dillon C, Fantl V. Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2000;2:191-6.

    PubMed  Google Scholar 

  61. Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol 2002;157:703-14.

    PubMed  Google Scholar 

  62. Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P. The int-2 gene product acts as an epithelial growth factor in transgenic mice. Embo J 1990;9:907-13.

    PubMed  Google Scholar 

  63. Ngan ES, Ma ZQ, Chua SS, DeMayo FJ, Tsai SY. Inducible expression of FGF-3 in mouse mammary gland. Proc Natl Acad Sci U S A 2002;99:11187-92.

    PubMed  Google Scholar 

  64. Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M, Schlessinger J, Jeanteur P, Birnbaum D, Theillet C. BEK and FLG, two receptors to members of the FGF family, are amplifi-ed in subsets of human breast cancers.Oncogene 1991;6:659-63.

    PubMed  Google Scholar 

  65. Penault-Llorca F, Bertucci F, Adelaide J, Parc P, Coulier F, Jacquemier J, BimbaunD, de Lapayriere O. Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer 1995;61:170-6.

    PubMed  Google Scholar 

  66. Jaakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhonen S, Lehtovirta P, Nevanlinna H. Amplification of fgfr4 gene in human breast and gynecological cancers. Int J Cancer 1993;54:378-82.

    PubMed  Google Scholar 

  67. Theillet C, Adelaide J, Louason G, Bonnet-Dorion F, Jacquemier J, Adnane J, Longy M, Katsaros D, Sismondi P, Gaudray P, et al. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers. Genes Chromosomes Cancer 1993;7:219-26.

    PubMed  Google Scholar 

  68. Cappellen D, De Oliveira C, Ricol D, de Medina S, Bourdin J, Sastre-Garau X, Chopin D, Thiery JP, Radvanyi F. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 1999;23:18-20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, C., Spencer-Dene, B. & Dickson, C. A Crucial Role for Fibroblast Growth Factor Signaling in Embryonic Mammary Gland Development. J Mammary Gland Biol Neoplasia 9, 207–215 (2004). https://doi.org/10.1023/B:JOMG.0000037163.56461.1e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000037163.56461.1e

Navigation