Skip to main content
Log in

Roles of the Transcription Factors Snail and Slug During Mammary Morphogenesis and Breast Carcinoma Progression

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The zinc-finger transcription factors Snail and Slug are involved in different processes controlling cell differentiation and apoptosis. They also appear to be involved in tumor progression. Their putative involvement in mammary gland development has not been specifically examined so far. Slug is expressed at a significant level in normal breast, and indirect evidence suggests it could be implicated in tubulogenesis. As an antiapoptotic agent, it could also protect epithelial cells from death during ductal lumen formation and during breast involution. In breast carcinomas, Snail transcription factors have been linked to tumor progression and invasiveness. Possible mechanisms include repression of the E-cadherin gene by Snail or Slug. However, it is not clear how this transcriptional activity is implicated in vivo. Other possible mechanisms involve maintenance of a plastic phenotype by Slug that could participate in local invasion of ductal carcinomas, and interference with apoptotic pathways that could contribute to global tumor growth and radioresistance. These processes probably also involve interactions with estrogen, EGF, or c-kit pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smith D, Franco del Amo F, Gridley T. Isolation of Sna, amouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development 1992 Dec;116(4):1033-9. Erratum in: Development 1993 Mar;117(3):precedi 1992.

    PubMed  Google Scholar 

  2. Hemavathy K, Ashraf S, Ip Y. Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Genetics 2000;257:1-12.

    Google Scholar 

  3. Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994;264:835-9.

    PubMed  Google Scholar 

  4. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002;3:155-66.

    PubMed  Google Scholar 

  5. Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J. 1998;17:7009-20.

    PubMed  Google Scholar 

  6. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001;23:912-23.

    PubMed  Google Scholar 

  7. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nature Rev 2002;2:442-54.

    Google Scholar 

  8. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000;2:76-83.

    PubMed  Google Scholar 

  9. Batlle E, Sancho E, Franci C, DominguezD, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of Ecadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2:84-9.

    PubMed  Google Scholar 

  10. Poser I, DominguezD, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK. Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 2001;276:24661-6.

    PubMed  Google Scholar 

  11. Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, et al. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 2001;37:65-71.

    PubMed  Google Scholar 

  12. Jiao W, Miyazaki K, Kitajima Y. Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 2002;86:98-101.

    PubMed  Google Scholar 

  13. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002;62:1613-8.

    PubMed  Google Scholar 

  14. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003;116:499-511.

    PubMed  Google Scholar 

  15. Chen S, Itoh T, Wu K, Zhou D, Yang C. Transcriptional regulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol 2002;83:93-9.

    PubMed  Google Scholar 

  16. Seki K, Fujimori T, Savagner P, Hata A, Aikawa T, Ogata N, et al.MouseSnail family transcription repressors regulate chondrocyte extracellular matrix, type II collagen and aggrecan. J Biol Chem 2003.

  17. Espineda CE, Chang J, Twiss J, Rajasekaran SA, Rajasekaran AK. Repression of Na,K-ATPase ta1-subunit by the transcription factor Snail in carcinoma. Mol Biol Cell 2003.

  18. Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003;116:1959-67.

    PubMed  Google Scholar 

  19. Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates Ecadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004;24:306-19.

    PubMed  Google Scholar 

  20. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a key regulator of the epithelialmesenchymal transition. Mol Cell Biol 2001;21:8184-8.

    PubMed  Google Scholar 

  21. Jiang R, Lan Y, Norton C, Sundberg J, Gridley T. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998;198:277-85.

    PubMed  Google Scholar 

  22. Savagner P, Karavanova I, Perantoni A, Thiery JP, Yamada KM. Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis. Dev Dyn 1998;213:182-7.

    PubMed  Google Scholar 

  23. Cheng CW, Wu PE, Yu JC, Huang CS, Yue CT, Wu CW, et al. Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 2001;20:3814-23.

    PubMed  Google Scholar 

  24. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002;21:3241-6.

    PubMed  Google Scholar 

  25. Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 2003;5:R217-22. Epub 2003 Sep 26.

    PubMed  Google Scholar 

  26. Demir A, Groothuis P, Nap A, Punyadeera C, de Goei A, Evers J, et al. Menstrual effluent induces epithelial-mesenchymal transitions in mesothelial cells. Hum Reprod 2004;19:21-9.

    PubMed  Google Scholar 

  27. Inoue A, Seidel M, Wu W, Kamizono S, Ferrando A, Bronson R, et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiationinduced apoptosis in vivo. Cancer Cell 2002;2:279-88.

    PubMed  Google Scholar 

  28. Okubo T, Truong TK, Yu B, Itoh T, Zhao J, Grube B, et al. Down-regulation of promoter 1.3 activity of the human aromatase gene in breast tissue by zinc-finger protein, snail (SnaH). Cancer Res 2001;15:1338-46.

    Google Scholar 

  29. Perez-Losada J, Sanchez-Martin M, Perez-Caro M, Perez-Mancera PA, Sanchez-Garcia I. The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 2003;22:4205-11.

    PubMed  Google Scholar 

  30. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T, et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002;100:1274-86.

    PubMed  Google Scholar 

  31. Li ML, Aggeler J, Farson DA, Hatier C, Hassell J, Bissell MJ. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A 1987;84:136-40.

    PubMed  Google Scholar 

  32. Petersen QW, Ronnov-Jessen L, Howlett AR, Bissel M. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Nat Acad Sci U. S. A. 1992;89:9064-8.

    Google Scholar 

  33. Thompson EW, Torri J, Sabol M, Sommers CL, Byers S, Valverius EM, et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 1994;12:181-94.

    PubMed  Google Scholar 

  34. Larue LOM, Hirchenhain J, Kemler R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 1994;91:8263-7.

    PubMed  Google Scholar 

  35. BerxG, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 2001;3:289-93.

    PubMed  Google Scholar 

  36. Hunt NC, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M. Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Archiv 1997;430:285-9.

    PubMed  Google Scholar 

  37. Asgeirsson KS, Jónasson JG, Tryggvadóttir L, Ólafsdóttir K, Sigurgeirsdóttir JR, Ingvarsson S, et al. Altered expression of E-cadherin in breast cancer. patterns, mechanisms and clinical significance. Eur J Cancer 2000;36:1098-106.

    PubMed  Google Scholar 

  38. Gupta SK, Douglas-Jones AG, Jasani B, Morgan JM, Pignatelli M, Mansel RE. E-cadherin (E-cad) expression in duct carcinoma in situ (DCIS) of the breast. Virchows Arch 1997;430:23-8.

    PubMed  Google Scholar 

  39. Gamallo C, Palacios J, Suarez A, Pizarro A, Navarro P, Quintanilla M, et al. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma. Am J Pathol 1993;142:987-93.

    PubMed  Google Scholar 

  40. Parker C, Rampaul RS, Pinder SE, Bell JA, Wencyk PM, Blamey RW, et al. E-cadherin as a prognostic indicator in primary breast cancer. Br J Cancer 2001;85:1958-63.

    PubMed  Google Scholar 

  41. Lipponen P, Saarelainen E, Ji H, Aaltomaa S, Syrjanen K. Expression of E-cadherin (E-CD) as related to other prognostic factors and survival in breast cancer. J Pathol 1994;174:101-9.

    PubMed  Google Scholar 

  42. Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 1993;53:1696-701.

    PubMed  Google Scholar 

  43. Daniel CW, Strickland P, Friedmann Y. Expression and functional role of E-and P-cadherin in mouse mammary ductal morphogenesis and growth. Dev Biol 1995;169:511-9.

    PubMed  Google Scholar 

  44. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. Acausal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998;392:190-3.

    PubMed  Google Scholar 

  45. Reis-Filho JS, Cancela Paredes J, Milanezi F, Schmitt FC. Clinicopathologic implications of E-cadherin reactivity in patients with lobular carcinoma in situ of the breast. Cancer 2002;94:2114-5; discussion 5-6.

    PubMed  Google Scholar 

  46. Kanai Y, Oda T, Tsuda H, Ochiai A, Hirohashi S.Point mutation of the E-cadherin gene in invasive lobular carcinoma of the breast. Jpn J Cancer Res 1994;85:1035-9.

    PubMed  Google Scholar 

  47. Huiping C, Sigurgeirsdottir JR, Jonasson JG, Eiriksdottir G, Johannsdottir JT, Egilsson V, et al. Chromosome alterations and E-cadherin gene mutations in human lobular breast cancer. Br J Cancer 1999;81:1103-10.

    PubMed  Google Scholar 

  48. Lei H, Sjoberg-Margolin S, Salahshor S, Werelius B, Jandakova E, Hemminki K, et al. CDH1 mutations are present in both ductal and lobular breast cancer, but promoter allelic variants show no detectable breast cancer risk. Int J Cancer 2002;98:199-204.

    PubMed  Google Scholar 

  49. Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996;13:1919-25.

    PubMed  Google Scholar 

  50. Bukholm IK, Nesland JM, Borresen-Dale AL. Re-expression of E-cadherin, alpha-catenin and beta-catenin, but not of gamma-catenin, in metastatic tissue from breast cancer patients [see comments]. J Pathol 2000;190:15-9.

    PubMed  Google Scholar 

  51. Nas SJ, Herman JG, Gabrielson E, Iversen PW, Parl FF, Davidson NE, et al. Aberrant methylation of the estrogen Roles of Snail Genes During Mammary Morphogenesis and Cancer 193 receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Res 2000;60:4346-8.

    PubMed  Google Scholar 

  52. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 1995;55:5195-9.

    PubMed  Google Scholar 

  53. Hennig G, Lowrick O, Birchmeier W, Behrens J. Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem 1996;271:595-602.

    PubMed  Google Scholar 

  54. Batsche E, Muchardt C, Behrens J, Hurst HC, Cremisi C. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol 1998;18:3647-58.

    PubMed  Google Scholar 

  55. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994;127:2021-36.

    PubMed  Google Scholar 

  56. Hosono S, Gross I, English MA, Hajra KM, Fearon ER, Licht JD. E-cadherin is a WT1 target gene. J Biol Chem 2000;275:10943-53.

    PubMed  Google Scholar 

  57. Tan C, Costello P, Sanghera J, Dominguez D, Baulida J, de Herreros AG, et al. Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/-human colon carcinoma cells. Oncogene 2001;20:133-40.

    PubMed  Google Scholar 

  58. D'Souza B, Taylor-Papadimitriou J. Overexpression of erb-B2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene. Proc Natl Acad Sci USA 1994;91:7202-6.

    PubMed  Google Scholar 

  59. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion.Mol Cell 2001;7:1267-78.

    PubMed  Google Scholar 

  60. Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 2003;22:891-8.

    PubMed  Google Scholar 

  61. Prall OW RE, Sutherland RL. Estrogen regulation of cell cycle progression in breast cancer cells. J Steroid Biochem Mol Biol 1998;65:169-74.

    PubMed  Google Scholar 

  62. Masood S. Immunocytochemical localization of estrogen and progesterone receptors in imprint preparations of breast carcinomas. Cancer Cell 1992;70:2109-14.

    Google Scholar 

  63. Chen S, Zhou D, Yang C, Okubo T, Kinoshita Y, Yu B, et al. Modulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol 2001;79:35-40.

    PubMed  Google Scholar 

  64. James VH, McNeill JM, Lai LC, Newton CJ, Ghilchik MW, Reed MJ. Aromatase activity in normal breast and breast tumor tissues: in vivo and in vitro studies. Steroids 1987;50: 269-79.

    PubMed  Google Scholar 

  65. Chen S, Zhou D, Okubo T, Kao Y, Eng E, Grube B, et al. Prevention and treatment of breast cancer by suppressing aromatase activity and expression. Ann N Y Acad Sci 2002;963:229-38.

    PubMed  Google Scholar 

  66. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003;113: 207-19.

    PubMed  Google Scholar 

  67. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232.

    PubMed  Google Scholar 

  68. Boyer B, Roche S, Denoyelle M, Thiery JP. Src and Ras are involved in separate pathways in epithelial cell scattering. Embo Journal 1997;16:5904-13.

    PubMed  Google Scholar 

  69. Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 2003;4:499-515.

    PubMed  Google Scholar 

  70. Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent onEGFR tyrosine phosphorylation. Oncogene 1997;15:1191-7.

    PubMed  Google Scholar 

  71. Hines SJ, Organ C, Kornstein MJ, Krystal GW. Coexpression of the c-kit and stem cell factor genes in breast carcinomas. Cell Growth Differ 1995;6:769-79.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côme, C., Arnoux, V., Bibeau, F. et al. Roles of the Transcription Factors Snail and Slug During Mammary Morphogenesis and Breast Carcinoma Progression. J Mammary Gland Biol Neoplasia 9, 183–193 (2004). https://doi.org/10.1023/B:JOMG.0000037161.91969.de

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000037161.91969.de

Navigation