Skip to main content
Log in

Notch Signaling in Mammary Development and Oncogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

With the discovery of an activated Notch oncogene as a causative agent in mouse mammary tumor virus induced breast cancer in mice, the potential role for Notch signaling in normal and pathological mammary development was revealed. Subsequently, Notch receptors have been found to regulate normal development in many organ systems. In addition, inappropriate Notch signaling has been implicated in cancer of several tissues in humans and animal model systems. Here we review important features of the Notch system, and how it may regulate development and cancer in the mammary gland. A large body of literature from studies in Drosophila and C. elegans has not only revealed molecular details of how the Notch proteins signal to control biology, but shown that Notch receptor activation helps to define how other signaling pathways are interpreted. In many ways the Notch system is used to define the context in which other pathways function to control proliferation, differentiation, cell survival, branching morphogenesis, asymmetric cell division, and angiogenesis—all processes which are critical for normal development and function of the mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mohr OL. Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 1919;4:274-282.

    Google Scholar 

  2. Mohr OL. A genetic and cytological analysis of a section deficiency involving four units of the X-chromosome in Drosophila melanogaster. Z. f. indukt. Abst. Vererbl. 1923;32:108-232.

    Google Scholar 

  3. Poulson DF. Chromosomal deficiencies and embryonic development of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1937;23:133-137.

    Google Scholar 

  4. PoulsonDF. The effects of certain X-chromosome deficiencies on the embryonic development of Drosophila melanogaster. The Journal of Experimental Zoology 1940;83:271-325.

    Google Scholar 

  5. Jan YN, Jan LY. Neuronal specification. Current Opinion in Genetics and Development 1992;2:608-613.

    PubMed  Google Scholar 

  6. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999;284:770-776.

    PubMed  Google Scholar 

  7. Artavanis-Tsakonas S, Delidakis C, Fehon RG. The Notch locus and the cell biology of neuroblast segregation. Annu. Rev. Cell Biol. 1991;7:427-452.

    PubMed  Google Scholar 

  8. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-repeats. Cell 1985;43:567-581.

    PubMed  Google Scholar 

  9. Kidd S, Kelley MR, Young MW. Sequence of the Notch locus of Drosophila: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell. Biol. 1986;6:3094-3108.

    PubMed  Google Scholar 

  10. Yochem J, Greenwald I. glp-1 and lin-12, Genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell 1989;58:553-563.

    PubMed  Google Scholar 

  11. Yochem J, Weston K, Greenwald I. The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 1988;335:547-550.

    PubMed  Google Scholar 

  12. Greenwald I. lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 1985;43(3 Pt 2):583-90.

    PubMed  Google Scholar 

  13. Lubman OY, Korolev SV, Kopan R. Anchoring notch genetics and biochemistry; structural analysis of the ankyrin domain sheds light on existing data. Mol Cell 2004;13(5):619-26.

    PubMed  Google Scholar 

  14. Egan SE, St-Pierre B, Leow C-C. Notch Receptors, Partners and Regulators: From Conserved Domains to Powerful Functions. Current Topics in Microbiology and Immunology 1997;228:273-324.

    Google Scholar 

  15. Thomas G. Furin at the cutting edge: from protein traf-fic to embryogenesis and disease. Nat Rev Mol Cell Biol 2002;3(10):753-66.

    PubMed  Google Scholar 

  16. Logeat F, Bessia C, Brou C, Lebail O, Jarriault S, Seidah NG, et al. The Notch1 receptor is cleaved constitutively by a furinlike convertase. PNAS 1998;95:8108-8112.

    PubMed  Google Scholar 

  17. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997;90(2):281-91.

    PubMed  Google Scholar 

  18. Fleming RJ. Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol 1998;9:599-607.

    PubMed  Google Scholar 

  19. Jacobsen TL, Brennan K, Arias AM, Muskavitch MA. Cisinteractions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 1998;125:4531-4540.

    PubMed  Google Scholar 

  20. Lissemore JL, Starmer WT. Phylogenetic analysis of vertebrate and invertebrate Delta/Serrate/LAG-2 (DSL) proteins. Mol Phylogenet Evol 1999;11(2):308-19.

    PubMed  Google Scholar 

  21. Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 1993;73:725-734.

    PubMed  Google Scholar 

  22. Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, Takahama Y. A role for pref-1 and HES-1 in thymocyte development. J Immunol 2000;164(1):256-64.

    PubMed  Google Scholar 

  23. Imatani A, Callahan R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 2000;19(2): 223-31.

    PubMed  Google Scholar 

  24. Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi D-C, Bulotsky MS, et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genetics 1998;19:274-278.

    PubMed  Google Scholar 

  25. Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 2003;4(10):786-97.

    PubMed  Google Scholar 

  26. Moloney DJ, Shair LH, Lu FM, Xia J, Locke R, Matta KL, et al. Mammalian Notch1 Is Modified with Two Unusual Forms of O-Linked Glycosylation Found on Epidermal Growth Factor-like Modules.The Journal of Biological Chemistry 2000;275:9604-9611.

    PubMed  Google Scholar 

  27. Haltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 2002;12(5):593-8.

    PubMed  Google Scholar 

  28. Haltiwanger RS, Stanley P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 2002;1573(3):328-35.

    PubMed  Google Scholar 

  29. IrvineKD, Wieschaus E. Fringe, a boundary-specific molecule, mediates interactions between dorsal and ventral cells during Drosophila wing development. Cell 1994;79:595-606.

    PubMed  Google Scholar 

  30. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000;406:369-375.

    PubMed  Google Scholar 

  31. Bruckner K, Perez L, Clausen H, Cohen S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000;406:411-415.

    PubMed  Google Scholar 

  32. Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS. Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 2002;277(33):29945-52.

    PubMed  Google Scholar 

  33. Cohen B, Bashirullah A, Dagnino L, Campbell C, Fisher B, Leow CC, et al. Fringe boundaries coincide with Notchdependent patterning centers in mammals and alter Notchdependent development in Drosophila. Nature Genetics 1997;16:283-288.

    PubMed  Google Scholar 

  34. Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF. A Family of Mammalian Fringe Genes Implicated in Boundary Determination and the Notch Pathway. Development 1997;124:2245-2254.

    PubMed  Google Scholar 

  35. Zhang N, Gridley T. Defects in somite formation in Lunatic fringe-deficient mice. Nature 1998;394:374-377.

    PubMed  Google Scholar 

  36. Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998;394:377-381.

    PubMed  Google Scholar 

  37. Zhang N, Norton CR, Gridley T. Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis 2002;33(1):21-28.

    PubMed  Google Scholar 

  38. Chen J, Moloney DJ, Stanley P. Fringe modulation of Jagged1-induced Notch signaling requires the action of beta 4galactosyltransferase-1. Proc Natl Acad Sci U S A 2001;98(24):13716-21.

    PubMed  Google Scholar 

  39. Okajima T, Irvine KD. Regulation of notch signaling by olinked fucose. Cell 2002;111(6):893-904.

    PubMed  Google Scholar 

  40. Sasamura T, SasakiN, Miyashita F, Nakao S, Ishikawa HO, Ito M, et al. neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions. Development 2003;130(20):4785-95.

    PubMed  Google Scholar 

  41. Shi S, Stanley P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci U S A 2003;100(9):5234-9.

    PubMed  Google Scholar 

  42. Okajima T, Xu A, Irvine KD. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem 2003;278(43):42340-5.

    PubMed  Google Scholar 

  43. Lei L, Xu A, Panin VM, Irvine KD. An O-fucose site in the ligand binding domain inhibits Notch activation. Development 2003;130(26):6411-21.

    PubMed  Google Scholar 

  44. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, et al. Calcium Depletion Dissociates 160 Callahan and Egan and Activates Heterodimeric Notch Receptors. Molecular and Cellular Biology 2000;20:1825-1835.

    PubMed  Google Scholar 

  45. Bush G, diSibio G, Miyamoto A, Denault JB, Leduc R, Weinmaster G. Ligand-induced signaling in the absence of furin processing of Notch1. Dev Biol 2001;229(2):494-502.

    PubMed  Google Scholar 

  46. Wesley CS, Saez L. Notch responds differently to Delta and Wingless in cultured Drosophila cells. J Biol Chem 2000;275(13):9099-101.

    PubMed  Google Scholar 

  47. Wesley CS, Mok LP. Regulation of Notch signaling by a novel mechanism involving suppressor of hairless stability and carboxyl terminus-truncated notch. Mol Cell Biol 2003;23(16):5581-93.

    PubMed  Google Scholar 

  48. Wesley CS, Saez L. Analysis of Notch Lacking the Carboxyl Terminus Identified in Drosophila Embryos. The Journal of Cell Biology 2000;149:683-696.

    PubMed  Google Scholar 

  49. Dinchuk JE, Focht RJ, Kelley JA, Henderson NL, Zolotarjova NI, Wynn R, et al. Absence of post-translational aspartyl betahydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia. J Biol Chem 2002;277(15):12970-7.

    PubMed  Google Scholar 

  50. Wesley CS. Notch and wingless regulate expression of cuticle patterning genes. Mol Cell Biol 1999;19(8):5743-58.

    PubMed  Google Scholar 

  51. Brennan K, Gardner P. Notching up another pathway. Bioessays 2002;24(5):405-10.

    PubMed  Google Scholar 

  52. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003;115(2):163-75.

    PubMed  Google Scholar 

  53. Raya A, Kawakami Y, Rodriguez-Esteban C, Ibanes M, Rasskin-Gutman D, Rodriguez-Leon J, et al. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 2004;427(6970):121-8.

    PubMed  Google Scholar 

  54. Li Y, Fetchko M, Lai ZC, Baker NE. Scabrous and Gp150 are endosomal proteins that regulate Notch activity. Development 2003;130(13):2819-27.

    PubMed  Google Scholar 

  55. Rawlins EL, Lovegrove B, Jarman AP. Echinoid facilitates Notch pathway signalling during Drosophila neurogenesis through functional interaction with Delta. Development 2003;130(26):6475-84.

    PubMed  Google Scholar 

  56. Kopan R. Notch: a membrane-bound transcription factor. J Cell Sci 2002;115(Pt 6):1095-7.

    PubMed  Google Scholar 

  57. DeJoussineau C, Soule J, Martin M, Anguille C, Montcourrier P, Alexandre D. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 2003;426(6966):555-9.

    PubMed  Google Scholar 

  58. Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 2000;6(3):625-36.

    PubMed  Google Scholar 

  59. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, et al. Processing of the Notch Ligand Delta by the Metalloprotease Kuzbanian. Science 1999;283:91-94.

    PubMed  Google Scholar 

  60. Ikeuchi T, Sisodia SS. The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent "gamma-secretase" cleavage. J Biol Chem 2003;278(10):7751-4.

    PubMed  Google Scholar 

  61. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, et al. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci U S A 2003;100(13):7638-43.

    PubMed  Google Scholar 

  62. LaVoie MJ, Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 2003;278(36):34427-37.

    PubMed  Google Scholar 

  63. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, et al. TAN-1, the human homologue of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991;66:649-661.

    PubMed  Google Scholar 

  64. Gallahan D, Kozak C, Callahan R. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 1987;61(1):218-220.

    PubMed  Google Scholar 

  65. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino GT, et al. Expression of an Activated Notch-Related int-3 Transgene Interferes with Cell Differentiation and Induces Neoplastic Transformation in Mammary and Salivary Glands. Genes Dev 1992;6(3):345-355.

    PubMed  Google Scholar 

  66. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways [see comments]. Oncogene 2000;19(8):992-1001.

    PubMed  Google Scholar 

  67. Dievart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999;18(44):5973-81.

    PubMed  Google Scholar 

  68. Kordon EC, Smith GH, Callahan R, Gallahan D. A novel non-mouse mammary tumor virus activation of the Int-3 gene in a spontaneous mouse mammary tumor. J Virol 1995;69(12):8066-9.

    PubMed  Google Scholar 

  69. Lee JS, Haruna T, Ishimoto A, Honjo T, Yanagawa S. Intracisternal type A particle-mediated activation of the Notch4/int3 gene in a mouse mammary tumor: generation of truncated Notch4/int3 mRNAs by retroviral splicing events. J Virol 1999;73(6):5166-71.

    PubMed  Google Scholar 

  70. Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. Embo J 1988;7(7):2089-95.

    PubMed  Google Scholar 

  71. Danielson KG, Knepper JE, Kittrell FS, Butel JS, Medina D, Durban EM. Clonal populations of the mouse mammary cell line, COMMA-D, which retain capability of morphogenesis in vivo. In Vitro Cell Dev Biol 1989;25(6):535-43.

    PubMed  Google Scholar 

  72. Robbins J, Blondel BJ, Gallahan D, Callahan R. Mouse mammary tumor gene Int-3: a member of the Notch gene family transforms mammary epithelial cells. J. Virol. 1992;66:2594-2599.

    PubMed  Google Scholar 

  73. Soriano JV, Pepper MS, Nakamura T, Orci L, Montesano R. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J Cell Sci 1995;108 ( Pt 2):413-30.

    PubMed  Google Scholar 

  74. Uyttendaele H, Soriano JV, Montesano R, Kitajewski J. Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 1998;196(2):204-17.

    PubMed  Google Scholar 

  75. Soriano JV, Uyttendaele H, Kitajewski J, Montesano R. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer 2000;86(5):652-9.

    PubMed  Google Scholar 

  76. Smith GH, Gallahan D, Diella F, Jhappan C, Merlino G, Callahan R. Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell, Growth & Differentiation 1995;6(5):563-577.

    Google Scholar 

  77. Gallahan D, Jhappan C, Robinson G, Hennighausen L, Sharp R, Kordon E, et al. Expression of a truncated Int3 gene in developing secretorymammaryepithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996;56(8):1775-85.

    PubMed  Google Scholar 

  78. Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000;19(37):4191-8.

    PubMed  Google Scholar 

  79. Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis. J Mammary Gland Biol Neoplasia 2001;6(1):23-36.

    PubMed  Google Scholar 

  80. Kurooka H, Kuroda K, Honjo T. Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res 1998;26(23):5448-55.

    PubMed  Google Scholar 

  81. Gallahan D, Callahan R. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 1997;14:1883-1890.

    PubMed  Google Scholar 

  82. Nam Y, Weng AP, Aster JC, Blacklow SC. Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem 2003;278(23):21232-9.

    PubMed  Google Scholar 

  83. Davis RL, Turner DL. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 2001;20(58):8342-57.

    PubMed  Google Scholar 

  84. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003;194(3):237-55.

    PubMed  Google Scholar 

  85. Jennings BH, Tyler DM, Bray SJ. Target specificities of Drosophila enhancer of split basic helix-loop-helix proteins. Mol Cell Biol 1999;19(7):4600-10.

    PubMed  Google Scholar 

  86. Chen Y, Fischer WH, Gill GN. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem 1997;272(22):14110-4.

    PubMed  Google Scholar 

  87. Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001;21(17):5925-34.

    PubMed  Google Scholar 

  88. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma inMMTVcyclin D1 transgenic mice. Nature 1994;369(6482):669-71.

    PubMed  Google Scholar 

  89. Han EK, Begemann M, Sgambato A, Soh JW, Doki Y, Xing WQ, et al. Increased expression of cyclin D1 in a murine mammary epithelial cell line induces p27kip1, inhibits growth, and enhances apoptosis. Cell Growth Differ 1996;7(6):699-710.

    PubMed  Google Scholar 

  90. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002;8(9):979-86.

    PubMed  Google Scholar 

  91. Oswald F, Liptay S, Adler G, Schmid RM. NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 1998;18(4):2077-88.

    PubMed  Google Scholar 

  92. Nofziger D, Miyamoto A, Lyons KM, Weinmaster G. Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 1999;126(8):1689-702.

    Google Scholar 

  93. Aster JC, Robertson ES, Hasserjian RP, Turner JR, Kieff E, Sklar J. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with RBPJkappa and activate transcription. J Biol Chem 1997;272(17): 11336-43.

    PubMed  Google Scholar 

  94. Dumont E, Fuchs KP, Bommer G, Christoph B, Kremmer E, Kempkes B. Neoplastic transformation by Notch is independent of transcriptional activation by RBP-J signalling. Oncogene 2000;19(4):556-61.

    PubMed  Google Scholar 

  95. Jeffries S, Capobianco AJ. Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol 2000;20(11):3928-41.

    PubMed  Google Scholar 

  96. Shawber C, Nofziger D, Hsieh JJ, Lindsell C, Bogler O, Hayward D, et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996;122(12):3765-73.

    PubMed  Google Scholar 

  97. Jeffries S, Robbins DJ, Capobianco AJ. Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol 2002;22(11):3927-41.

    PubMed  Google Scholar 

  98. Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M. Identification of new human mastermind proteins defines a family that consists of positive regulators for notch signaling. J Biol Chem 2002;277(52):50612-20.

    PubMed  Google Scholar 

  99. Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002;129(4):863-73.

    PubMed  Google Scholar 

  100. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 2004;18(1):99-115.

    PubMed  Google Scholar 

  101. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002;21(20):3241-6.

    PubMed  Google Scholar 

  102. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002;62(6):1613-8.

    PubMed  Google Scholar 

  103. Ross DA, Kadesch T. The notch intracellular domain can function as a coactivator for LEF-1. Mol Cell Biol 2001;21(22):7537-44.

    PubMed  Google Scholar 

  104. Wilson-Rawls J, Molkentin JD, Black BL, Olson EN. Activated notch inhibits myogenic activity of theMADS-Boxtranscription factor myocyte enhancer factor 2C. Mol Cell Biol 1999;19(4):2853-62.

    PubMed  Google Scholar 

  105. Messenguy F, Dubois E. Role ofMADSbox proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003;316(Oct 16):1-21.

    Google Scholar 

  106. Diederich RJ, Matsuno K, Hing H, Artavanis-Tsakonas S. Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development 1994;120(3):473-81.

    PubMed  Google Scholar 

  107. Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 1995;121(8):2633-44.

    PubMed  Google Scholar 

  108. Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell 1994;79(5):875-84.

    PubMed  Google Scholar 

  109. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994;79(5):885-92.

    PubMed  Google Scholar 

  110. Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S, et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 1998;18(4):2230-9.

    PubMed  Google Scholar 

  111. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N, et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 2001;276(48):45031-40.

    PubMed  Google Scholar 

  112. Lai EC. Protein degradation: four E3s for the notch pathway. Curr Biol 2002;12 (2):R74-8.

    Google Scholar 

  113. Qiu L, Joazeiro C, Fang N, Wang HY, Elly C, Altman Y, et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem 2000;275(46):35734-7.

    PubMed  Google Scholar 

  114. Takeyama K, Aguiar RC, Gu L, He C, Freeman GJ, Kutok JL, et al. The BAL-binding protein BBAP and related Deltex family members exhibit ubiquitin-protein isopeptide ligase activity. J Biol Chem 2003;278(24):21930-7.

    PubMed  Google Scholar 

  115. Le Borgne R, Schweisguth F. Notch signaling: endocytosis makes delta signal better. Curr Biol 2003;13(7):R273-5.

    Google Scholar 

  116. Lamar E, Deblandre G, Wettstein D, Gawantka V, Pollet N, Niehrs C, et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev 2001;15(15):1885-99.

    PubMed  Google Scholar 

  117. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001;276(38):35847-53.

    PubMed  Google Scholar 

  118. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 2001;276(37):34371-8.

    PubMed  Google Scholar 

  119. Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 2001;21(21):7403-15.

    PubMed  Google Scholar 

  120. Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 2003.

  121. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. Embo J 2000;19(9):2069-81.

    PubMed  Google Scholar 

  122. Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 2001;413(6853):316-22.

    PubMed  Google Scholar 

  123. Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E, et al. hCDC4 gene mutations in endometrial cancer. Cancer Res 2002;62(16):4535-9.

    PubMed  Google Scholar 

  124. ZhongW. Diversifying neural cells through order of birth and asymmetry of division. Neuron 2003;37(1):11-4.

    PubMed  Google Scholar 

  125. McGill MA, McGlade CJ. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 2003;278(25):23196-203.

    PubMed  Google Scholar 

  126. Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ.LNXfunctions as aRINGtype E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo J 2002;21(1-2):93-102.

    PubMed  Google Scholar 

  127. Carmena A, Buff E, Halfon MS, Gisselbrecht S, Jimenez F, Baylies MK, et al. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev Biol 2002;244(2):226-42.

    Google Scholar 

  128. Wang M, Sternberg PW. Pattern formation during C. elegans vulval induction. Curr Top Dev Biol 2001;51:189-220.

    PubMed  Google Scholar 

  129. Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch pathways inC. elegans vulval development. Science 2004;303(5658):663-6.

    PubMed  Google Scholar 

  130. Shaye DD, Greenwald I. Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 2002;420(6916):686-90.

    PubMed  Google Scholar 

  131. Tsuda L, Nagaraj R, Zipursky SL, Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell 2002;110(5):625-37.

    PubMed  Google Scholar 

  132. Flores GV, Duan H, Yan H, Nagaraj R, Fu W, Zou Y, et al. Combinatorial signaling in the specification of unique cell fates. Cell 2000;103(1):75-85.

    PubMed  Google Scholar 

  133. SternbergPW. Developmental biology.Apattern of precision. Science 2004;303(5658):637-8.

    PubMed  Google Scholar 

  134. Chen N, Greenwald I. The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell 2004;6(2): 183-92.

    PubMed  Google Scholar 

  135. Berset T, Hoier EF, Battu G, Canevascini S, Hajnal A. Notch inhibition of RAS signaling throughMAPkinase phosphatase LIP-1 during C. elegans vulval development. Science 2001;291(5506):1055-8.

    PubMed  Google Scholar 

  136. Ikeya T, Hayashi S. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea. Development 1999;126(20):4455-63.

    PubMed  Google Scholar 

  137. Sidow A, Bulotsky MS, Kerrebrock AW, Bronson RT, Daly MJ, Reeve MP, et al. Serrate2 is disrupted in the mouse limb-development mutant syndactylism. Nature 1997;389(6652):722-5.

    PubMed  Google Scholar 

  138. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999;147(1):105-20.

    PubMed  Google Scholar 

  139. Zimrin AB, Pepper MS, McMahon GA, Nguyen F, Montesano R, Maciag T. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J Biol Chem 1996;271(51):32499-502.

    PubMed  Google Scholar 

  140. Small D, Kovalenko D, Soldi R, Mandinova A, Kolev V, Trifonova R, et al. Notch activation suppresses fibroblast growth factor-dependent cellular transformation. J BiolChem 2003;278(18):16405-13.

    Google Scholar 

  141. Blokzijl A, Dahlqvist C, Reissmann E, Falk A, Moliner A, Lendahl U, et al. Cross-talk between the Notch and TGFbeta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003;163(4): 723-8.

    PubMed  Google Scholar 

  142. Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003;4(3): 395-406.

    PubMed  Google Scholar 

  143. Uyttendaele H, Ho J, Rossant J, Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 2001;98(10):5643-8.

    PubMed  Google Scholar 

  144. Greenwald I. LIN-12/Notch signaling: lessons fromwormsand flies. Genes & Development 1998;12:1751-1762.

    Google Scholar 

  145. Hartenstein AY, Rugendorff A, Tepass U, Hartenstein V. The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 1992;116:1203-1220.

    PubMed  Google Scholar 

  146. Llimargas M. The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development 1999;126(11):2355-64.

    PubMed  Google Scholar 

  147. LiY, Baker NE. Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye. Curr Biol 2001;11(5):330-8.

    PubMed  Google Scholar 

  148. Anant S, Roy S, VijayRaghavan K. Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development 1998;125(8):1361-9.

    PubMed  Google Scholar 

  149. Lopez-Schier H, St Johnston D. Delta signaling from the germ line controls the proliferation and differentiation of the Notch Signaling in Mammary Development and Oncogenesis 163 somatic follicle cells during Drosophila oogenesis. Genes Dev 2001;15(11):1393-405.

    PubMed  Google Scholar 

  150. Berry LW, Westlund B, Schedl T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 1997;124(4):925-36.

    PubMed  Google Scholar 

  151. Giraldez AJ, Cohen SM.Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 2003;130(26):6533-43.

    PubMed  Google Scholar 

  152. Okabe M, Imai T, Kurusu M, Hiromi Y, Okano H. Translational repression determines a neuronal potential in Drosophila asymmetric cell division. Nature 2001;411 (6833):94-8.

    PubMed  Google Scholar 

  153. Miller DT, Cagan RL. Local induction of patterning and programmed cell death in the developing Drosophila retina. Development 1998;125(12):2327-35.

    PubMed  Google Scholar 

  154. Garces C, Ruiz-Hidalgo MJ, de Mora JF, Park C, Miele L, Goldstein J, et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 1997;272(47):29729-34.

    PubMed  Google Scholar 

  155. Gridley T. Notch signaling during vascular development. Proc Natl Acad Sci U S A 2001;98(10):5377-8.

    PubMed  Google Scholar 

  156. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002;296(5570):1046-9.

    PubMed  Google Scholar 

  157. Bahary N, Zon LI. Development. Endothelium-chicken soup for the endoderm. Science 2001;294(5542):530-1.

    PubMed  Google Scholar 

  158. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001;52(2):182-9.

    PubMed  Google Scholar 

  159. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 2003;3(10):756-67.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callahan, R., Egan, S.E. Notch Signaling in Mammary Development and Oncogenesis. J Mammary Gland Biol Neoplasia 9, 145–163 (2004). https://doi.org/10.1023/B:JOMG.0000037159.63644.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000037159.63644.81

Navigation