Steroid Receptors and Cell Cycle in Normal Mammary Epithelium



The ovarian steroids estrogen and progesterone (E2 and P) are essential for normal mammary gland growth and development; however, the mechanisms by which they influence the proliferative activity of the mammary epithelium remain unclear. Mammary epithelial cells cells expressing the receptors for E2 and P (ER and PR respectively) are separate from, although often adjacent to, those capable of proliferating, implying that the ovarian steroids act indirectly via paracrine or juxtacrine growth factors to stimulate entry into the cell cycle. A large number of candidate factors have been identified in a variety of different experimental systems, and it appears that transforming growth factor β may play a role in preventing proliferation of steroid receptor-containing cells. Dysregulation of the strict inverse relationship between ERα expression and proliferation is detectable in premalignant human breast lesions, indicating that it might be essential to the tumorigenic process. Challenges for the future include determining which of the candidates identified as being mediators of the effects of E2 are physiologically and clinically relevant as well as finding out how ERα-containing cells become proliferative during tumorigenesis. Answering these questions could greatly increase our understanding of the factors controlling mammary gland development and the processes leading to cancer formation.

mammary epithelium estrogen progesterone estrogen receptor progesterone receptor cell cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Sutherland and E. A. Musgrove (2004). Cyclins and breast cancer. J. Mamunary Gland Biol. Neoplasia. Google Scholar
  2. 2.
    B. A. Howard and B. A. Gusterson (2000). Human breast development. J. Mammary Gland Biol. Neoplasia 5:119–137.Google Scholar
  3. 3.
    B. A. Gusterson, P. Monaghan, R. Mahendran, J. Ellis, and M. J. O'Hare (1986). Identification of myoepithelial cells in human and rat breasts by anti-common acute lymphoblastic leukemia antigen antibody A12. J. Natl. Cancer Inst. 77:343–349.Google Scholar
  4. 4.
    J. Taylor-Papadimitriou, R. Millis, J. Burchell, R. Nash, L. Pang, and J. Gilbert (1986). Patterns of reaction of monoclonal antibodies HMFG-1 and-2 with benign breast tissues and breast carcinomas. J. Exp. Pathol. 2:247–60.Google Scholar
  5. 5.
    J. Taylor-Papadimitriou, M. Stampfer, J. Bartek, A. Lewis, M. Boshell, E. B. Lane, et al. (1989). Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: Relation to in vivo phenotypes and influence of medium. J. Cell Sci. 94(Pt. 3):403–413.Google Scholar
  6. 6.
    J. T. Emerman, J. Stingl, A. Petersen, E. J. Shpall, and C. J. Eaves (1996). Selective growth of freshly isolated human breast epithelial cells cultured at low concentrations in the presence or absence of bone marrow cells. Breast Cancer Res. Treat. 41:147–159.Google Scholar
  7. 7.
    U. Latza, G. Niedobitek, R. Schwarting, H. Nekarda, and H. Stein (1990). Ber-EP4: New monoclonal antibody which distinguishes epithelia from mesothelial. J. Clin. Pathol. 43:213–219.Google Scholar
  8. 8.
    K. Joshi, J. A. Smith, N. Perusinghe, and P. Monoghan (1986). Cell proliferation in the human mammary epithelium. Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol. 124:199–206.Google Scholar
  9. 9.
    O. W. Petersen, P. E. Hoyer, and B. van Deurs (1987). Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res. 47:5748–5751.Google Scholar
  10. 10.
    S. R. Wellings, H. M. Jensen, and R. G. Marcum (1975). An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–273.Google Scholar
  11. 11.
    C. W. Daniel and G. B. Silberstein (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland. Development, Regulation and Function, Plenum, New York, pp. 3–36.Google Scholar
  12. 12.
    J. Russo and I. H. Russo, (1987). Development of the human mammary gland. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland. Development, Regulation and Function, Plenum, New York, pp. 67–93.Google Scholar
  13. 13.
    M. M. Richert, K. L. Schwertfeger, J. W. Ryder, and S. M. Anderson (2000). An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia 5:227–241.Google Scholar
  14. 14.
    H. McGregor, C. E. Land, K. Choi, S. Tokuoka, P. I. Liu, T. Wakabayashi, et al. (1977). Breast cancer incidence among atomic bomb survivors, Hiroshima and Nagasaki, 1950–69. J. Natl. Cancer Inst. 59:799–811.Google Scholar
  15. 15.
    M. Clemons and P. Goss (2001). Estrogen and the risk of breast cancer. N. Engl. J. Med. 344:276–285.Google Scholar
  16. 16.
    R. C. Travis and T. J. Key (2003). Oestrogen exposure and breast cancer risk. Breast Cancer Res. 5:239–247.Google Scholar
  17. 17.
    Z. Laron, R. Pauli, and A. Pertzelan (1989). Clinical evidence on the role of estrogens in the development of the breasts. Proc. R. Soc. Edinb. B1 95:13–22.Google Scholar
  18. 18.
    B. Fisher, J. P. Costantino, D. L. Wickerham, C. K. Redmond, M. Kavanah, W. M. Cronin, et al. (1998). Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 90:1371–1388.Google Scholar
  19. 19.
    W. P. Bocchinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2:323–334.Google Scholar
  20. 20.
    R. A. Lubet, V. E. Steele, R. DeCoster, C. Bowden, M. You, M. M. Juliana, et al. (1998). Chemopreventive effects of the aromatase inhibitor vorozole (R 83842) in the methylnitrosourea-induced mammary cancer model. Carcinogenesis 19:1345–1351.Google Scholar
  21. 21.
    S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans: A unifying hypothesis. Proc. Natl. Acad. Sci. U.S.A. 92:3650–3657.Google Scholar
  22. 22.
    R. C. Humphreys, J. P. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mammary Gland Biol. Neoplasia 2:343–354.Google Scholar
  23. 23.
    V. Beral (2003). Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427.Google Scholar
  24. 24.
    R. K. Ross, A. Paganini-Hill, P. C. Wan, and M. C. Pike (2000). Effect of hormone replacement therapy on breast cancer risk: Estrogen versus estrogen plus progestin. J. Natl. Cancer Inst. 92:328–332.Google Scholar
  25. 25.
    C. Schairer, J. Lubin, R. Troisi, S. Sturgeon, L. Brinton, and R. Hoover (2000). Menopausal estrogen and estrogenprogestin replacement therapy and breast cancer risk. JAMA 283:485–491.Google Scholar
  26. 26.
    E. Enmark, M. Pelto-Huikko, K. Grandien, S. Lagercrantz, J. Lagercrantz, G. Fried, et al. (1997). Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab. 82:4258–4265.Google Scholar
  27. 27.
    V. Kumar, S. Green, G. Stack, M. Berry, J. R. Jin, and P. Chambon (1987). Functional domains of the human estrogen receptor. Cell 51:941–951.Google Scholar
  28. 28.
    J. M. Hall and D. P. McDonnell (1999). The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578.Google Scholar
  29. 29.
    C. L. Clarke and R. L. Sutherland (1990). Progestin regulation of cellular proliferation. Endocr. Rev. 11:266–301.Google Scholar
  30. 30.
    E. Vegeto, M. M. Shahbaz, D. X. Wen, M. E. Goldman, B. W. O'Malley, and D. P. McDonnell (1993). Human progesterone receptor A form is a cell-and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7:1244–1255.Google Scholar
  31. 31.
    J. K. Richer, B. M. Jacobsen, N. G. Manning, M. G. Abel, D. M. Wolf, and K. B. Horwitz (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J. Biol. Chem. 277:5209–5218.Google Scholar
  32. 32.
    B. Mulac-Jericevic, J. P. Lydon, F. J. DeMayo, and O. M. Conneely (2003). Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl. Acad. Sci. U.S.A. 100:9744–9749.Google Scholar
  33. 33.
    S. Ali and R. C. Coombes (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2:101–112.Google Scholar
  34. 34.
    D. P. McDonnell and J. D. Norris (2002). Connections and regulation of the human estrogen receptor. Science 296:1642–1644.Google Scholar
  35. 35.
    K. Vermeulen, D. R. Van Bockstaele, and Z. N. Berneman (2003). The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36:131–149.Google Scholar
  36. 36.
    T. Evans, E. T. Rosenthal, J. Youngblom, D. Distel, and T. C. Hunt (1983). Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396.Google Scholar
  37. 37.
    J. C. Pines (1991). Cyclins: Wheels within wheels. Cell Growth Differ. 2:305–310.Google Scholar
  38. 38.
    C. J. Sherr (1994). G1 phase progression: Cycling on cue. Cell 79:551–555.Google Scholar
  39. 39.
    M. Ohtsubo, A. M. Theodoras, J. Schumacher, J. M. Roberts, and M. Pagano (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell Biol. 15:2612–2624.Google Scholar
  40. 40.
    C. J. Sherr and J. M. Roberts (1999). CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512.Google Scholar
  41. 41.
    S. F. Doisneau-Sixou, C. M. Sergio, J. S. Carroll, R. Hui, E. A. Musgrove, and R. L. Sutherland (2003). Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10:179–186.Google Scholar
  42. 42.
    R. B. Clarke, A. Howell, C. S. Potten, and E. Anderson (1997). Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 57:4987–4991.Google Scholar
  43. 43.
    G. Shyamala, Y. C. Chou, S. G. Louie, R. C. Guzman, G. H. Smith, and S. Nandi (2002). Cellular expression of estrogen and progesterone receptors in mammary glands: Regulation by hormones, development and aging. J. Steroid Biochem. Mol. Biol. 80:137–148.Google Scholar
  44. 44.
    V. Speirs, G. P. Skliris, S. E. Burdall, and P. J. Carder (2002). Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. J. Clin. Pathol. 55:371–374.Google Scholar
  45. 45.
    J. F. Couse and K. S. Korach (1999). Estrogen receptor null mice: What have we learned and where will they lead us? Endocr. Rev. 20:358–417.Google Scholar
  46. 46.
    P. A. Mote, S. Bartow, N. Tran, and C. L. Clarke (2002). Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res. Treat. 72:163–172.Google Scholar
  47. 47.
    J. Russo, X. Ao, C. Grill, and I. H. Russo (1999). Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res. Treat. 53:217–227.Google Scholar
  48. 48.
    G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mammary Gland Biol. Neoplasia 2:393–402.Google Scholar
  49. 49.
    S. O. Mueller, J. A. Clark, P. H. Myers, and K. S. Korach (2002). Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology 143:2357–2365.Google Scholar
  50. 50.
    S. A. Bartow (1998). Use of the autopsy to study ontogeny and expression of the estrogen receptor gene in human breast. J. Mammary Gland Biol. Neoplasia 3:37–48.Google Scholar
  51. 51.
    C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley, and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 95:5076–5081.Google Scholar
  52. 52.
    C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14:650–654.Google Scholar
  53. 53.
    K. C. Chan, W. F. Knox, J. M. Gee, J. Morris, R. I. Nicholson, C. S. Potten, et al. (2002). Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 62:122–128.Google Scholar
  54. 54.
    T. J. Martin and M. T. Gillespie (2001). Receptor activator of nuclear factor kappa B ligand (RANKL): Another link between breast and bone. Trends. Endocrinol. Metab. 12:2–4.Google Scholar
  55. 55.
    E. A. Kritikou, A. Sharkey, K. Abell, P. J. Came, E. Anderson, R. W. Clarkson, et al. (2003). A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130:3459–3468.Google Scholar
  56. 56.
    R. C. Hovey, J. Harris, D. L. Hadsell, A. V. Lee, C. J. Ormandy, and B. K. Vonderhaar (2003). Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol. Endocrinol. 17:460–471.Google Scholar
  57. 57.
    C. Palmieri, D. Roberts-Clark, A. Assadi-Sabet, R. C. Coope, M. O'Hare, A. Sunters, et al. (2003). Fibroblast growth factor 7, secreted by breast fibroblasts, is an interleukin-1beta-induced paracrine growth factor for human breast cells. J. Endocrinol. 177:65–81.Google Scholar
  58. 58.
    D. C. Allred, S. K. Mohsin, and S. A. Fuqua (2001). Histological and biological evolution of human premalignant breast disease. Endocr. Relat. Cancer 8:47–61.Google Scholar
  59. 59.
    B. S. Shoker, C. Jarvis, D. R. Sibson, C. Walker, and J. P. Sloane (1999). Oestrogen receptor expression in the normal and pre-cancerous breast. J. Pathol. 188:237–244.Google Scholar
  60. 60.
    B. S. Shoker, C. Jarvis, R. B. Clarke, E. Anderson, J. Hewlett, M. P. Davies, et al. (1999). Estrogen receptor-positive proliferating cells in the normal and precancerous breast. Am. J. Pathol. 155:1811–1815.Google Scholar
  61. 61.
    E. Anderson, R. B. Clarke, and A. Howell (1998). Estrogen responsiveness and control of normal human breast proliferation. J. Mammary Gland Biol. Neoplasia 3:23–35.Google Scholar
  62. 62.
    V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372.Google Scholar
  63. 63.
    Q. Yu, Y. Geng, and P. Sicinski (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021.Google Scholar
  64. 64.
    T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.Google Scholar
  65. 65.
    D. M. Barnes and C. E. Gillett (1998). Cyclin D1 in breast cancer. Breast Cancer Res. Treat 52:1–15.Google Scholar
  66. 66.
    X. L. Zhu, W. Hartwick, T. Rohan, and R. Kandel (1998). Cyclin D1 gene amplification and protein expression in benign breast disease and breast carcinoma. Mod. Pathol. 11:1082–1088.Google Scholar
  67. 67.
    B. S. Shoker, C. Jarvis, M. P. Davies, M. Iqbal, D. R. Sibson, and J. P. Sloane (2001). Immunodetectable cyclin D(1)is associated with oestrogen receptor but not Ki67 in normal, cancerous and precancerous breast lesions. Br. J. Cancer 84:1064–1069.Google Scholar
  68. 68.
    M. D. Planas-Silva, J. L. Donaher, and R. A. Weinberg (1999). Functional activity of ectopically expressed estrogen receptor is not sufficient for estrogen-mediated cyclin D1 expression. Cancer Res. 59:4788–4792.Google Scholar
  69. 69.
    D. A. Zajchowski, R. Sager, and L. Webster (1993). Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant estrogen receptor. Cancer Res. 53:5004–5011.Google Scholar
  70. 70.
    M. H. Barcellos-Hoff (2003). Transforming growth factor beta's role in mammary gland development and carcinogenesis. Breast Cancer Res. 5(Suppl. 1):33.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Christie Hospital NHS TrustManchesterUK

Personalised recommendations