Skip to main content
Log in

Using Gene Expression Arrays to Elucidate Transcriptional Profiles Underlying Prolactin Function

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Prolactin is an ancient hormone, with different functions in many species. The binding of prolactin to its receptor, a member of the cytokine receptor superfamily, results in the activation of different intracellular signaling pathways, such as JAK2/STAT5, MAP kinase, and PI3K/AKT. How prolactin elicits so many different biological responses remains unclear. Recently, microarray technology has been applied to identify prolactin target genes in different systems. Here, we attempt to summarize and compare the available data. Our comparison of the genes reported to be transcriptionally regulated by prolactin indicates that there are few genes in common between the different tissues. Among the organs studied, mammary and prostate glands displayed the largest number of overlaps in putative prolactin target genes. Some of the candidates have been implicated in tumorigenesis. The relevance and validation of microarray data, as well as comparison of the results obtained by different groups, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Franchimont, C. Dourcy, J. J. Legros, A. Reuter, Y. Vrindts-Gevaert, and J. R. Van Cauwenberge (1976). Prolactin levels during the menstrual cycle. Clin. Endocrinol. (Oxf). 5:643–650.

    Google Scholar 

  2. N. D. Horseman (2001). Prolactin. In L. J. DeGroot and J. L. Jameson (eds.), Endocrinology, 4th ed. Vol.1, Philadelphia. Saunders, pp. 209–220.

    Google Scholar 

  3. L. A. Manzon (2002). The role of prolactin in fish osmoregulation: A review. Gen. Comp. Endocrinol. 125:291–310.

    Google Scholar 

  4. De Vlaming. (1979). Actions of prolactin among the vertebrates. In E. J. W. Barrington (ed.), Hormones and evolution, Academic Press, New York, pp. 561–642.

    Google Scholar 

  5. C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, and P. A. Kelly (1998). Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19:225–68.

    Google Scholar 

  6. J. F. Bazan (1989). A novel family of growth factor receptors: A common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor beta-chain. Biochem. Biophys. Res. Commun. 164:788–95.

    Google Scholar 

  7. G. S. Campbell, L. S. Argetsinger, J. N. Ihle, P. A. Kelly, J. A. Rillema, and C. Carter-Su (1994). Activation of JAK2 tyrosine kinase by prolactin receptors in Nb2 cells and mouse mammary gland explants. Proc. Natl. Acad. Sci. U.S.A. 91:5232–5236.

    Google Scholar 

  8. J. J. Lebrun, S. Ali, L. Sofer, A. Ullrich, and P. A. Kelly (1994). Prolactin-induced proliferation of Nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2. J. Biol. Chem. 269:14021–14026.

    Google Scholar 

  9. H. Rui, R. A. Kirken, and W. L. Farrar (1994). Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J. Biol. Chem. 269:5364–5368.

    Google Scholar 

  10. R. Piccoletti, P. Maroni, P. Bendinelli, and A. Bernelli-Zazzera (1994). Rapid stimulation of mitogen-activated protein kinase of rat liver by prolactin. Biochem. J. 303(Pt. 2):429–433.

    Google Scholar 

  11. K. A. al-Sakkaf, P. R. Dobson, and B. L. Brown (1996). Activation of phosphatidylinositol 3-kinase by prolactin in Nb2 cells. Biochem. Biophys. Res. Commun. 221:779–784.

    Google Scholar 

  12. C. Brisken, S. Kaur, T. Chavarria, N. Binart, R. Sutherland, R. Weinberg, P. A. Kelly, and C. J. Ormandy (1999). Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol. 210:96–106.

    Google Scholar 

  13. N. Binart, C. Helloco, C. J. Ormandy, J. Barra, P. Clement-Lacroix, N. Baran, P. A. Kelly (2000). Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology 141:2691–2697.

    Google Scholar 

  14. C. Reynolds, K. Montone, C. Powell, J. Tomaszewski, and C. Clevenger (1997). Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138:5555–5560.

    Google Scholar 

  15. M. J. Naylor, J. A. Lockefeer, N. D. Horseman, and C. J. Ormandy (2003). Prolactin regulates mammary epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine 20:111–114.

    Google Scholar 

  16. C. Clevenger, W. Chang, W. Ngo, T. Pasha, K. Montone, and J. Tomaszewski (1995). Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am. J. Pathol. 146:695–705.

    Google Scholar 

  17. G. Fuh and J. Wells (1995). Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J. Biol. Chem. 270:13133–13137.

    Google Scholar 

  18. E. Ginsburg and B. Vonderhaar (1995). Prolactin synthesis and secretion by human breast cancer cells. Cancer Res. 55:2591–2595.

    Google Scholar 

  19. A. J. Vomachka, S. L. Pratt, J. A. Lockefeer, and N. D. Horseman (2000). Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19:1077–1084.

    Google Scholar 

  20. C. V. Clevenger, P. A. Furth, S. E. Hankinson, and L. A. Schuler (2003). The role of prolactin in mammary carcinoma. Endocr. Rev. 24:1–27.

    Google Scholar 

  21. Y. N. Sinha (1995). Structural variants of prolactin: Occurrence and physiological significance. Endocr. Rev. 16:354–369.

    Google Scholar 

  22. M. Shirota, D. Banville, S. Ali, C. Jolicoeur, J. M. Boutin, M. Edery, J. Djiane, and P. A. Kelly (1990). Expression of two forms of prolactin receptor in rat ovary and liver. Mol. Endocrinol. 4:1136–1143.

    Google Scholar 

  23. C. Brisken, M. Socolovsky, H. F. Lodish, and R. A. Weinberg (2002). The signaling domain of the erythropoeitin receptor rescues prolactin receptor-mutant epithelium. Proc. Natl. Acad. Sci. U.S.A. 99:14241–14245.

    Google Scholar 

  24. L. Y. Yu-Lee, J. A. Hrachovy, A. M. Stevens, and L. A. Schwarz (1990). Interferon-regulatory factor 1 is an immediate-early gene under transcriptional regulation by prolactin in Nb2 T cells. Mol. Cell Biol. 10:3087–3094.

    Google Scholar 

  25. T. Ganguly, J. F. Hyde, and M. Vore (1993). Prolactin increases Na+/taurocholate cotransport in isolated hepatocytes from postpartum rats and ovariectomized rats. J. Pharmacol. Exp. Ther. 267:82–87.

    Google Scholar 

  26. J. Frasor and G. Gibori (2003). Prolactin regulation of estrogen receptor expression. Trends Endocrinol. Metab. 14:118–123.

    Google Scholar 

  27. C. T. Albarracin, T. G. Parmer, W. R. Duan, S. E. Nelson, G. Gibori (1994). Identification of a major prolactin-regulated protein as 20 alpha-hydroxysteroid dehydrogenase: Coordinate regulation of its activity, protein content, and messenger ribonucleic acid expression. Endocrinology 134:2453–2460.

    Google Scholar 

  28. F. A. Feltus, B. Groner, and M. H. Melner (1999). Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: Activation by prolactin. Mol. Endocrinol. 13:1084–1093.

    Google Scholar 

  29. R. Nanbu-Wakao, Y. Fujitani, Y. Masuho, M. Muramatu, and H. Wakao (2000). Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol. Endocrinol. 14:307–316.

    Google Scholar 

  30. W. A. Guyette, R. J. Matusik, and J. M. Rosen (1979). Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17:1013–1023.

    Google Scholar 

  31. L. Hennighausen, C. Westphal, L. Sankaran, and C. W. Pittius (1991). Regulation of expression of genes for milk proteins. Biotechnology 6:65–74.

    Google Scholar 

  32. T. G. Burdon, K. A. Maitland, A. J. Clark, R. Wallace, and C. J. Watson (1994). Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol. Endocrinol. 8:1528–1536.

    Google Scholar 

  33. D. A. Favy, P. Rio, J. C. Maurizis, C. Hizel, Y. J. Bignon, and D. J. Bernard-Gallon (1999). Prolactin-dependent up-regulation of BRCA1 expression in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 258:284–291.

    Google Scholar 

  34. J. L. Brockman, M. D. Schroeder, and L. A. Schuler (2002). PRL activates the cyclin D1 promoter via the Jak2/Stat pathway. Mol. Endocrinol. 16:774–784.

    Google Scholar 

  35. M. K. Broadhurst and T. T. Wheeler (2001). The p100 coactivator is present in the nuclei of mammary epithelial cells and its abundance is increased in response to prolactin in culture and in mammary tissue during lactation. J. Endocrinol. 171:329–337.

    Google Scholar 

  36. T. Yahata, H. Takedatsu, S. L. Dunwoodie, J. Braganca, T. Swingler, S. L. Withington, J. Hur, K. R. Coser, K. J. Isselbacher, S. Bhattacharya, and T. Shioda (2002). Cloning of mouse Cited4, a member of the CITED family p300/CBP-binding transcriptional coactivators: Induced expression in mammary epithelial cells. Genomics 80:601–613.

    Google Scholar 

  37. K. Dillner, J. Kindblom, A. Flores-Morales, S. T. Pang, J. Tornell, H. Wennbo, and G. Norstedt (2002). Molecular characterization of prostate hyperplasia in prolactin-transgenic mice by using cDNA representational difference analysis. Prostate 52:139–149.

    Google Scholar 

  38. F. G. Robertson, J. Harris, M. J. Naylor, S. R. Oakes, J. Kindblom, K. Dillner, H. Wennbo, J. Tornell, P. A. Kelly, J. Green, and C. J. Ormandy (2003). Prostate development and carcinogenesis in prolactin receptor knockout mice. Endocrinology 144:3196–3205.

    Google Scholar 

  39. M. Hayashi, S. Fujimoto, H. Takano, T. Ushiki, K. Abe, H. Ishikura, M. C. Yoshida, C. Kirchhoff, T. Ishibashi, and M. Kasahara (1996). Characterization of a human glycoprotein with a potential role in sperm-egg fusion: cDNA cloning, immunohistochemical localization, and chromosomal assignment of the gene (AEGL1). Genomics 32:367–374.

    Google Scholar 

  40. L. M. Klemme, K. P. Roberts, L. B. Hoffman, K. M. Ensrud, J. E. Siiteri, and D. W. Hamilton (1999). Cloning and characterization of the rat Crisp-1 gene. Gene 240:279–288.

    Google Scholar 

  41. K. P. Roberts, L. B. Hoffman, K. M. Ensrud, and D. W. Hamilton (2001). Expression of crisp-1 mRNA splice variants in the rat epididymis, and comparative analysis of the rat and mouse crisp-1 gene regulatory regions. J. Androl. 22:157–163.

    Google Scholar 

  42. C. H. Yeung, F. Perez-Sanchez, S. Schroter, C. Kirchhoff, and T. G. Cooper (2001). Changes of the major sperm maturation-associated epididymal protein HE5 (CD52) on human ejaculated spermatozoa during incubation. Mol. Hum. Reprod. 7:617–624.

    Google Scholar 

  43. I. A. Lea, P. Sivashanmugam, and M. G. O'Rand (2001). Zonadhesin: Characterization, localization, and zona pellucida binding. Biol. Reprod. 65:1691–1700.

    Google Scholar 

  44. A. Lundwall, A. Peter, J. Lovgren, H. Lilja, and J. Malm (1997). Chemical characterization of the predominant proteins secreted by mouse seminal vesicles. Eur. J. Biochem. 249:39–344.

    Google Scholar 

  45. C. Romano-Carratelli, C. Bentivoglio, I. Nuzzo, N. Benedetto, E. Buommino, A. Cozzolino, M. Carteni, F. Morelli, M. R. Costanza, B. Metafora, V. Metafora, and S. Metafora (2002). Effect of protein SV-IV on experimental Salmonella enterica serovar Typhimurium infection in mice. Clin. Diagn. Lab Immunol. 9:115–125.

    Google Scholar 

  46. L. Williams, C. McDonald, and S. Higgins (1985). Sequence organisation of rat seminal vesicle F gene: Location of transcriptional start point and sequence comparison with six other androgen-regulated genes. Nucleic Acids Res. 13:659–672.

    Google Scholar 

  47. C. Stocco, E. Callegari, and G. Gibori (2001). Opposite effect of prolactin and prostaglandin F(2 alpha) on the expression of luteal genes as revealed by rat cDNA expression array. Endocrinology 142:4158–4161.

    Google Scholar 

  48. C. Bole-Feysot, E. Perret, P. Roustan, B. Bouchard, and P. A. Kelly (2000). Analysis of prolactin-modulated gene expression profiles during the NB2 cell cycle using differential screening techniques. Genome Biol. 4: RESEARCH0008.Epub 2000 Oct. 16.

  49. C. J. Ormandy, A. Camus, J. Barra, D. Damotte, B. Lucas, H. Buteau, M. Edery, N. Brousse, C. Babinet, N. Binart, and P. A. Kelly (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11:167–178.

    Google Scholar 

  50. N. Baran, P. A. Kelly, and N. Binart (2002). Characterization of a prolactin-regulated gene in reproductive tissues using the prolactin receptor knockout mouse model. Biol. Reprod. 66:1210–1218.

    Google Scholar 

  51. Z. Hou, J. P. Bailey, A. J. Vomachka, M. Matsuda, J. A. Lockefeer, and N. D. Horseman (2000). Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) is induced by prolactin and suppressed by progesterone in mammary epithelium. Endocrinology 141:4278–4283.

    Google Scholar 

  52. M. J. Naylor, E. Ginsburg, T. P. Iismaa, B. K. Vonderhaar, D. Wynick, and C. J. Ormandy (2003). The neuropeptide galanin augments lobuloalveolar development. J. Biol. Chem. 278:29145–29152.

    Google Scholar 

  53. S. Nandi (1958). Endocrine control of mammary-gland development in the C3H/He Crgl mouse. J. Natl. Cancer Inst. 21:1039–1063.

    Google Scholar 

  54. C. Brisken, A. Ayyannan, C. Nguyen, A. Heineman, F. Reinhardt, J. Tan, S. K. Dey, G. P. Dotto, R. A. Weinberg, and T. Jan (2002). IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev. Cell. 3:877–887.

    Google Scholar 

  55. K. B. DeOme, L. J. Faulkin Jr., H. A. Bern, and P. B. Blair (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H Mice. Cancer Res. 19:511–520.

    Google Scholar 

  56. V. Fantl, P. Edwards, J. Steel, B. Vonderhaar, and C. Dickson (1999). Impaired mammary gland development in Cyl-1(-/-) mice during pregnancy and lactation is epithelial cell autonomous. Dev. Biol. 212:1–11.

    Google Scholar 

  57. R. C. Hovey, J. Harris, D. L. Hadsell, A. V. Lee, C. J. Ormandy, and B. K. Vonderhaar (2003). Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol. 17:460–471.

    Google Scholar 

  58. A. Howlett and M. Bissell (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell. Biol. 2:79–89.

    Google Scholar 

  59. C. J. Ormandy, M. Naylor, J. Harris, F. Robertson, N. D. Horseman, G. J. Lindeman, J. Visvader, and P. A. Kelly (2003). Investigation of the transcriptional changes underlycing functional defects in the mammary glands of prolactin receptor Knockout mice. Recent. Prog. Horm. Res. 58: 297–323.

    Google Scholar 

  60. Z. J. Tu, R. Kollander, and D. T. Kiang (1998). Differential up-regulation of gap junction connexin 26 gene in mammary and uterine tissues: The role of Sp transcription factors. Mol. Endocrinol. 12:1931–1938.

    Google Scholar 

  61. D. Locke, N. Perusinghe, T. Newman, H. Jayatilake, W. H. Evans, and P. Monaghan (2000). Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J. Cell. Physiol. 183:228–237.

    Google Scholar 

  62. C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, J. A. McMahon, A. P. McMahon, and R. A. Weinberg (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes. Dev. 14:650–654.

    Google Scholar 

  63. J. M. Bradbury, P. A. Edwards, C. C. Niemeyer, and T. C. Dale (1995). Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev. Biol. 170:553–563.

    Google Scholar 

  64. N. J. Kenney, G. H. Smith, K. Rosenberg, M. L. Cutler, and R. B. Dickson (1996). Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ 7:1769–1781.

    Google Scholar 

  65. S. K. Das, I. Chakraborty, B. C. Paria, X. N. Wang, G. Plowman, and S. K. Dey (1995). Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol. Endocrinol. 9:691–705.

    Google Scholar 

  66. S. L. Grimm, T. N. Seagroves, E. B. Kabotyanski, R. C. Hovey, B. K. Vonderhaar, J. P. Lydon, K. Miyoshi, L. Hennighausen, C. J. Ormandy, A. V. Lee, M. A. Stull, T. L. Wood, and J. M. Rosen (2002). Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol. Endocrinol. 16:2675–2691.

    Google Scholar 

  67. V. Turk, B. Turk, and D. Turk (2001). Lysosomal cysteine proteases: Facts and opportunities. EMBO J. 20:4629–4633.

    Google Scholar 

  68. A. Adenis, G. Huet, F. Zerimech, B. Hecquet, M. Balduyck, and J. P. Peyrat (1995). Cathepsin B, L, and D activities in colorectal carcinomas: Relationship with clinico-pathological parameters. Cancer Lett. 96:267–275.

    Google Scholar 

  69. Y. Kanber, N. R. Demirbag, A. D. Sam, and N. Aydin (2002). Cathepsin D expression in colorectal adenocarcinomas and adenomas. Int. J. Biol. Markers 17:165–168.

    Google Scholar 

  70. M. A. Burke, D. Hutter, R. P. Reshamwala, and J. E. Knepper (2003). Cathepsin L plays an active role in involution of the mouse mammary gland. Dev. Dyn. 227:315–322.

    Google Scholar 

  71. V. Gerke, and S. E. Moss (2002). Annexins: From structure to function. Physiol. Rev. 82:331–371.

    Google Scholar 

  72. H. A. Sikder, M. K. Devlin, S. Dunlap, B. Ryu, and R. M. Alani (2003). Id proteins in cell growth and tumorigenesis. Cancer Cell 3:525–530.

    Google Scholar 

  73. J. Hasskarl and K. Munger (2002). Id proteins—tumor markers or oncogenes? Cancer Biol. Ther. 1:91–96.

    Google Scholar 

  74. K. Miyoshi, B. Meyer, P. Gruss, Y. Cui, J. P. Renou, F. V. Morgan, G. H. Smith, M. Reichenstein, M. Shani, L. Hennighausen, and G. W. Robinson (2002). Mammary epithelial cells are not able to undergo pregnancy-dependent differentiation in the absence of the Helix-Loop-Helix inhibitor Id2. Mol. Endocrinol. 16:2892–2901.

    Google Scholar 

  75. A. Mackay, C. Jones, T. Dexter, R. L. Silva, K. Bulmer, A. Jones, P. Simpson, P. A. Harris, P. S. Jat, A. M. Neville, L. F. Reis, S. R. Lakhani, and M. J. O'Hare (2003). cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 22:2680–2688.

    Google Scholar 

  76. M. Taniguchi, K. Miura, H. Iwao, and S. Yamanaka (2001). Quantitativ assessment of DNA microarrays—omparison with Northern blot analyses. Genomics 71:34–39.

    Google Scholar 

  77. M. S. Rajeevan, D. G. Ranamukhaarachchi, S. D. Vernon, and E. R. Unger (2001). Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451.

    Google Scholar 

  78. R. F. Chuaqui, R. F. Bonner, C. J. Best, J. W. Gillespie, M. J. Flaig, S. M. Hewitt, J. L. Phillips, D. B. Krizman, M. A. Tangrea, M. Ahram, and W. M. Linehan (2002). Post-analysis follow-up and validation microarray experiments. Nat. Genet. 32(Suppl):509–514.

    Google Scholar 

  79. R. C. Hovey, J. F. Trott, E. Ginsburg, A. Godhar, M. M. Sasaki, S. J. Fountain, K. Sundarajan, B. K. Vonderhaar (2001). Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev. Dyn. 222:192–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Brisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gass, S., Harris, J., Ormandy, C. et al. Using Gene Expression Arrays to Elucidate Transcriptional Profiles Underlying Prolactin Function. J Mammary Gland Biol Neoplasia 8, 269–285 (2003). https://doi.org/10.1023/B:JOMG.0000010029.85796.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000010029.85796.63

Navigation