Skip to main content
Log in

Expression Profiling of Human Breast Cancers and Gene Regulation by Progesterone Receptors

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Even the first expression profiling studies of breast cancers have generated new insights. They suggest for example, that information about tumor aggressiveness, prognosis, metastatic potential, or treatment outcome is encoded in, and can be deduced from, the primary tumor. On the other hand no clinical genomic array data have yet been published that deal with hormonal aspects of breast tumorigenesis, tumor progression, or therapeutics. Rather, studies have focused on experimental model systems. We review below the currently published data on array profiling in clinical breast cancer, then describe our studies in breast cancer cell lines and xenograft models dealing with progesterone receptors (PRs) and the role of progesterone. We demonstrate that the two PR isoforms, PR-A and PR-B, have mostly nonoverlapping molecular signatures when liganded by progesterone, with PR-B the more active form. Additionally, we document the surprising finding that unliganded PRs can regulate gene transcription, with PR-A the more active form. In ovariectomized mice supplemented with estradiol but lacking measurable progesterone, PR-B-expressing tumors grow to twice the size of PR-A-expressing ones. We conclude that in breast cancers, PRs are more than simple markers of estrogen receptor function. Rather, presence of PRs and the ratio of the two isoforms directly influence tumor phenotype, even in the absence of ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470.

    Google Scholar 

  2. A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and S. P. Fodor (1994). Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. U.S.A. 91:5022–5026.

    Google Scholar 

  3. H. C. King and A. A. Sinha (2001). Gene expression profile analysis by DNA microarrays: Promise and pitfalls. JAMA 286:2280–2288.

    Google Scholar 

  4. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, and J. P. Mesirov, et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531–537.

    Google Scholar 

  5. A. A. Alizadeh, D. T. Ross, C. M. Perou, and M. van de Rijn (2001). Towards a novel classification of human malignancies based on gene expression patterns. J. Pathol. 195:41–52.

    Google Scholar 

  6. M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540.

    Google Scholar 

  7. E. A. Clark, T. R. Golub, E. S. Lander, and R. O. Hynes (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535.

    Google Scholar 

  8. U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A. 96:6745–6750.

    Google Scholar 

  9. L. Bubendorf, M. Kolmer, J. Kononen, P. Koivisto, S. Mousses, Y. Chen, et al. (1999). Hormone therapy failure in human prostate cancer: Analysis by complementary DNA and tissue microarrays. J. Natl. Cancer. Inst. 91:1758–1764.

    Google Scholar 

  10. S. Ramaswamy and T. R. Golub (2002). DNA microarrays in clinical oncology. J. Clin. Oncol. 20:1932–1941.

    Google Scholar 

  11. S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang, M. Angelo, et al. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. U.S.A. 98:15149–15154.

    Google Scholar 

  12. D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24:227–235.

    Google Scholar 

  13. K. J. Martin, E. Graner, Y. Li, L. M. Price, B. M. Kritzman, M. V. Fournier, et al. (2001). High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc. Natl. Acad. Sci. U.S.A. 98:2646–2651.

    Google Scholar 

  14. I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, et al. (2001). Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344:539–548.

    Google Scholar 

  15. D. P. Harkin (2000). Uncovering functionally relevant signaling pathways using microarray-based expression profiling. Oncologist 5:501–507.

    Google Scholar 

  16. L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Google Scholar 

  17. C. M. Perou, S. S. Jeffrey, M. van de Rijn, C. A. Rees, M. B. Eisen, D. T. Ross, et al. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. U.S.A. 96:9212–9217.

    Google Scholar 

  18. M. A. Unger, M. Rishi, V. B. Clemmer, J. L. Hartman, E. A. Keiper, J. D. Greshock, et al. (2001). Characterization of adjacent breast tumors using oligonucleotide microarrays. Breast Cancer Res. 3:336–341.

    Google Scholar 

  19. C. M. Perou, T. Sorlie, M. B. Eisen, M. van de Rijn, S. S. Jeffrey, C. A. Rees, et al. (2000). Molecular portraits of human breast tumours. Nature 406:747–752.

    Google Scholar 

  20. A. Ahr, T. Karn, C. Solbach, T. Seiter, K. Strebhardt, U. Holtrich, et al. (2002). Identification of high risk breast-cancer patients by gene expression profiling. Lancet 359:131–132.

    Google Scholar 

  21. S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33:49–54.

    Google Scholar 

  22. L. A. Liotta and E. C. Kohn (2003). Cancer's deadly signature. Nat. Genet. 33:10–11.

    Google Scholar 

  23. M. J. van de Vijver, Y. D. He, L. J. van't Veer, H. Dai, A. A. Hart, D. W. Voskuil, et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347:1999–2009.

    Google Scholar 

  24. A. Adeyinka, E. Emberley, Y. Niu, L. Snell, L. C. Murphy, H. Sowter, et al. (2002). Analysis of gene expression in ductal carcinoma in situ of the breast. Clin. Cancer Res. 8:3788–3795.

    Google Scholar 

  25. V. Luzzi, V. Holtschlag, and M. A. Watson (2001). Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am. J. Pathol. 158:2005–2010.

    Google Scholar 

  26. S. K. Gruvberger, M. Ringner, P. Eden, A. Borg, M. Ferno, C. Peterson, et al. (2002). Expression profiling to predict outcome in breast cancer: The influence of sample selection. Breast Cancer Res. 5:23–26.

    Google Scholar 

  27. L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, R. Bernards, et al. (2002). Expression profiling predicts outcome in breast cancer. Breast Cancer Res. 5:57–58.

    Google Scholar 

  28. T. A. Ince and R. A. Weinberg (2002). Functional genomics and the breast cancer problem. Cancer Cell 1:15–17.

    Google Scholar 

  29. A. Kallioniemi (2002). Molecular signatures of breast cancer—predicting the future. N. Engl. J. Med. 347:2067–2068.

    Google Scholar 

  30. T. Sorlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98:10869–10874.

    Google Scholar 

  31. F. Bertucci, V. Nasser, S. Granjeaud, F. Eisinger, J. Adelaide, R. Tagett, et al. (2002). Gene expression profiles of poor-prognosis primary breast cancer correlate with survival. Hum. Mol. Genet. 11:863–872.

    Google Scholar 

  32. K. B. Horwitz, W. L. McGuire, O. H. Pearson, and A. Segaloff (1975). Predicting response to endocrine therapy in human breast cancer. A hypothesis. Science 189:726–727.

    Google Scholar 

  33. D. C. Sgroi, S. Teng, G. Robinson, R. LeVangie, J. R. Hudson, and A. G. Elkahloun (1999). In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59:5656–5661.

    Google Scholar 

  34. C. Sotiriou, T. J. Powles, M. Dowsett, A. A. Jazaeri, A. L. Feldman, L. Assersohn, et al. (2002). Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res. 4:R3.

    Google Scholar 

  35. U. Scherf, D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24:236–244.

    Google Scholar 

  36. J. K. Richer, B. M. Jacobsen, N. G. Manning, M. G. Abel, D. M. Wolf, and K. B. Horwitz (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J. Biol. Chem. 277:5209–5218.

    Google Scholar 

  37. B. M. Jacobsen, J. K. Richer, S. A. Schittone, and K. B. Horwitz (2002). New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J. Biol. Chem. 277:27793–27800.

    Google Scholar 

  38. A. Inoue, N. Yoshida, Y. Omoto, S. Oguchi, T. Yamori, R. Kiyama, et al. (2002). Development of cDNA microarray for expression profiling of estrogen-responsive genes. J. Mol. Endocrinol. 29:175–192.

    Google Scholar 

  39. M. Soulez and M. G. Parker (2001). Identification of novel oestrogen receptor target genes in human ZR75–1 breast cancer cells by expression profiling. J. Mol. Endocrinol. 27:259–274.

    Google Scholar 

  40. A. S. Levenson, I. L. Kliakhandler, K. M. Svoboda, K. M. Pease, S. A. Kaiser, J. E. Ward III, et al. (2002). Molecular classification of selective oestrogen receptor modulators on the basis of gene expression profiles of breast cancer cells expressing oestrogen receptor alpha. Br. J. Cancer 87:449–456.

    Google Scholar 

  41. S. G. Hilsenbeck, W. E. Friedrichs, R. Schiff, P. O'Connell, R. K. Hansen, C. K. Osborne, et al. (1999). Statistical analysis of array expression data as applied to the problem of tamoxifen resistance. J. Natl. Cancer. Inst. 91:453–459.

    Google Scholar 

  42. K. B. Horwitz and W. L. McGuire (1978). Estrogen control of progesterone receptor in human breast cancer. Correlation with nuclear processing of estrogen receptor. J. Biol. Chem. 253:2223–2228.

    Google Scholar 

  43. W. L. McGuire (1978). Hormone receptors: Their role in predicting prognosis and response to endocrine therapy. Semin. Oncol. 5:428–433.

    Google Scholar 

  44. K. B. Horwitz, L. L. Wei, S. M. Sedlacek, and C. N. d'Arville (1985). Progestin action and progesterone receptor structure in human breast cancer: A review. Recent Prog. Horm. Res. 41:249–316.

    Google Scholar 

  45. S. D. Costa, S. Lange, K. Klinga, E. Merkle, and M. Kaufmann (2002). Factors influencing the prognostic role of oestrogen and progesterone receptor levels in breast cancer—Results of the analysis of 670 patients with 11 years of follow-up. Eur. J. Cancer 38:1329–1334.

    Google Scholar 

  46. Writing Group for the Women's Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women's Health Initiative randomized controlled trial. JAMA 288:321–333.

  47. L. Bergkvist, H-O. Adami, I. Persson, R. Hoover, and C. Schairer (1989). The risk of breast cancer after estrogen and estrogen-progestin replacement. N. Engl. J. Med. 321:293–297.

    Google Scholar 

  48. I. Persson, E. Weiderpass, L. Bergkvist, R. Bergstrom, and C. Schairer (1999). Risks of breast and endometrial cancer after estrogen and estrogen-progestin replacement. Cancer Causes Control 10:253–260.

    Google Scholar 

  49. C. Schairer, J. Lubin, R. Troisi, S. Sturgeon, L. Brinton, and R. Hoover (2000). Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 283:485–491.

    Google Scholar 

  50. G. A. Greendale, B. A. Reboussin, S. Slone, C. Wasilauskas, M. C. Pike, and G. Ursin (2003). Postmenopausal hormone therapy and change in mammographic density. J. Natl. Cancer Inst. 95:30–37.

    Google Scholar 

  51. C. L. Clarke and R. L. Sutherland (1990). Progestin regulation of cellular proliferation. Endocr. Rev. 11:266–301.

    Google Scholar 

  52. C. A. Sartorius, M. Y. Melville, A. R. Hovland, L. Tung, G. S. Takimoto, and K. B. Horwitz (1994). A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B isoform. Mol. Endocrinol. 8:1347–1360.

    Google Scholar 

  53. M. E. Meyer, C. Quirin-Stricker, T. Lerouge, M. T. Bocquel, and H. Gronemeyer (1992). A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J. Biol. Chem. 267:10882–10887.

    Google Scholar 

  54. E. Vegeto, M. M. Shabaz, D. X. Wen, M. E. Goldman, B. W. O'Malley, and D. P. McDonnell (1993). Human progesterone receptor A form is a cell-and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7:1244–1255.

    Google Scholar 

  55. C. A. Sartorius, L. Tung, G. S. Takimoto, and K. B. Horwitz (1993). Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J. Biol. Chem. 268:9262–9266.

    Google Scholar 

  56. L. Tung, M. K. Mohamed, J. P. Hoeffler, G. S. Takimoto, and K. B. Horwitz (1993). Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol. Endocrinol. 7:1256–1265.

    Google Scholar 

  57. D. P. McDonnell and M. E. Goldman (1994). RU486 exerts antiestrogenic activities through a novel progesterone receptor A form-mediated mechanism. J. Biol. Chem. 269:11945–11949.

    Google Scholar 

  58. A. R. Hovland, R. L. Powell, G. S. Takimoto, L. Tung, and K. B. Horwitz (1998). An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J. Biol. Chem. 273:5455–5460.

    Google Scholar 

  59. P. A. Mote, R. L. Balleine, E. M. McGowan, and C. L. Clarke (1999). Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J. Clin. Endocrinol. Metab. 84:2963–2971.

    Google Scholar 

  60. P. A. Mote, R. L. Balleine, E. M. McGowan, and C. L. Clarke (2000). Heterogeneity of progesterone receptors A and B expression in human endometrial glands and stroma. Hum. Reprod. 15 (Suppl. 3):48–56.

    Google Scholar 

  61. C. J. Farr, D. J. Easty, J. Ragoussis, J. Collignon, R. Lovell-Badge, and P. N. Goodfellow (1993). Characterization and mapping of the human SOX 4 gene. Mamm. Genome 4:577–584.

    Google Scholar 

  62. J. Fujimoto, S. Ichigo, R. Hirose, H. Sakaguchi, and T. Tamaya (1997). Clinical implication of expression of progesterone receptor form A and B mRNAs in secondary spreading of gynecologic cancers. J. Steroid Biochem. Mol. Biol. 62:449–454.

    Google Scholar 

  63. B. Mulac-Jericevic, R. A. Mullinax, F. J. DeMayo, J. P. Lydon, and O. M. Conneely (2000). Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289:1751–1754.

    Google Scholar 

  64. G. Shyamala, X. Yang, G. Silberstein, M. H. Barcellos-Hoff, and E. Dale (1998). Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc. Natl. Acad. Sci. U.S.A. 95:696–701.

    Google Scholar 

  65. G. Shyamala, X. Yang, R. D. Cardiff, and E. Dale (2000). Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 97:3044–3049.

    Google Scholar 

  66. J. D. Graham, C. Yeates, R. L. Balleine, S. S. Harvey, J. S. Milliken, A. M. Bilous, et al. (1995). Characterization of progesterone receptor A and B expression in human breast cancer. Cancer Res. 55:5063–5068.

    Google Scholar 

  67. E. M. McGowan and C. L. Clarke (1999). Effect of overexpression of progesterone receptor A on endogenous progestin-sensitive endpoints in breast cancer cells. Mol. Endocrinol. 13:1657–1671.

    Google Scholar 

  68. A. Bamberger, K. Milde-Langosch, H. Schulte, and T. Loning (2000). Progesterone receptor isoforms, pr-b and pr-a, in breast cancer: Correlations with clinicopathologic tumor parameters and expression of ap-1 factors. Horm. Res. 54:32–37.

    Google Scholar 

  69. P. A. Mote, S. Bartow, N. Tran, and C. L. Clarke (2002). Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res. Treat. 72:163–172.

    Google Scholar 

  70. I. D. Guerreiro Da Silva, Y. F. Hu, I. H. Russo, X. Ao, A. M. Salicioni, X. Yang, et al. (2000). S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int. J. Oncol. 16:231–240.

    Google Scholar 

  71. B. A. Lwaleed, M. Chisholm, and J. L. Francis (1999). Urinary tissue factor levels in patients with breast and colorectal cancer. J. Pathol. 187:291–294.

    Google Scholar 

  72. T. Ueno, M. Toi, M. Koike, S. Nakamura, T. Tominaga, B. A. Lwaleed, et al. (2000). Tissue factor expression in breast cancer tissues: Its correlation with prognosis and plasma concentration. Br. J. Cancer 83:164–170.

    Google Scholar 

  73. S. Goruppi, C. Chiaruttini, M. E. Ruaro, B. Varnum, and C. Schneider (2001). Gas6 induces growth, beta-Catenin stabilization, and T-cell factor transcriptional activation in contact-inhibited C57 mammary cells. Mol. Cell. Biol. 21:902–915.

    Google Scholar 

  74. M. Nacht, A. T. Ferguson, W. Zhang, J. M. Petroziello, B. P. Cook, Y. H. Gao, et al. (1999). Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res. 59:5464–5470.

    Google Scholar 

  75. F. Arcuri, C. Monder, C. J. Lockwood, and F. Schatz (1996). Expression of 11 beta-hydroxysteroid dehydrogenase during decidualization of human endometrial stromal cells. Endocrinology 137:595–600.

    Google Scholar 

  76. A. D. Darnel, T. K. Archer, and K. Yang (1999). Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by steroid hormones and epidermal growth factor in the Ishikawa human endometrial cell line. J. Steroid Biochem. Mol. Biol. 70:203–210.

    Google Scholar 

  77. H. Watari, E. J. Blanchette-Mackie, N. K. Dwyer, M. Watari, C. G. Burd, S. Patel, et al. (2000). Determinants of NPC1 expression and action: Key promoter regions, posttranscriptional control, and the importance of a "cysteine-rich" loop. Exp. Cell. Res. 259:247–256.

    Google Scholar 

  78. H. A. Kester, B. M. van der Leede, P. T. van der Saag, and B. van der Burg (1997). Novel progesterone target genes identified by an improved differential display technique suggest that progestin-induced growth inhibition of breast cancer cells coincides with enhancement of differentiation. J. Biol. Chem. 272:16637–16643.

    Google Scholar 

  79. X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11:179–186.

    Google Scholar 

  80. G. W. Robinson, P. F. Johnson, L. Hennighausen, and E. Sterneck (1998). The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 12:1907–1916.

    Google Scholar 

  81. T. N. Seagroves, S. Krnacik, B. Raught, J. Gay, B. Burgess-Beusse, G. J. Darlington, et al. (1998). C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 12:1917–1928.

    Google Scholar 

  82. Y. Friedmann and C. W. Daniel (1996). Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions. Dev. Biol. 177:347–355.

    Google Scholar 

  83. S. van der Flier, A. Brinkman, M. P. Look, E. M. Kok, M. E. Meijer-van Gelder, J. G. Klijn, et al. (2000). Bcar1/p130Cas protein and primary breast cancer: Prognosis and response to tamoxifen treatment. J. Natl. Cancer Inst. 92:120–127.

    Google Scholar 

  84. S. van der Flier, C. M. Chan, A. Brinkman, M. Smid, S. R. Johnston, L. C. Dorssers, et al. (2000). BCAR1/p130Cas expression in untreated and acquired tamoxifen-resistant human breast carcinomas. Int. J. Cancer 89:465–468.

    Google Scholar 

  85. Y. P. Cheon, Q. Li, X. Xu, F. J. DeMayo, I. C. Bagchi, and M. K. Bagchi (2002). A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol. Endocrinol. 16:2853–2871.

    Google Scholar 

  86. L. Tung, T. Shen, M. G. Abel, R. L. Powell, G. S. Takimoto, C. A. Sartorius, et al. (2001). Mapping the unique activation function 3 in the progesterone B-receptor upstream segment. Two LXXLL motifs and a tryptophan residue are required for activity. J. Biol. Chem. 276:39843–39851.

    Google Scholar 

  87. C. Atalay, M. Kanlioz, and M. Altinok (2002). Menstrual cycle and hormone receptor status in breast cancer patients. Neoplasma 49:278.

    Google Scholar 

  88. D. No, T. P. Yao, and R. M. Evans (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:3346–3351.

    Google Scholar 

  89. C. A. Sartorius, T. J. Shen, and K. B. Horwitz (in press). Progesterone receptors A and B differentially affect the growth of estrogen-dependent human breast tumor xenografts. Breast Cancer Res. Treat.

  90. T. K. Jenssen, W. P. Kuo, T. Stokke, and E. Hovig (2002). Associations between gene expressions in breast cancer and patient survival. Hum. Genet. 111:411–420.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta M. Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, B.M., Richer, J.K., Sartorius, C.A. et al. Expression Profiling of Human Breast Cancers and Gene Regulation by Progesterone Receptors. J Mammary Gland Biol Neoplasia 8, 257–268 (2003). https://doi.org/10.1023/B:JOMG.0000010028.48159.84

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000010028.48159.84

Navigation