Journal of Mathematical Chemistry

, Volume 35, Issue 1, pp 29–53 | Cite as

On the Statistical Mechanics of Non-Hamiltonian Systems: The Generalized Liouville Equation, Entropy, and Time-Dependent Metrics

  • Gregory S. Ezra


Several questions in the statistical mechanics of non-Hamiltonian systems are discussed. The theory of differential forms on the phase space manifold is applied to provide a fully covariant formulation of the generalized Liouville equation. The properties of invariant volume elements are considered, and the nonexistence in general of smooth invariant measures noted. The time evolution of the generalized Gibbs entropy associated with a given choice of volume form is studied, and conditions under which the entropy is constant are discussed. For non-Hamiltonian systems on manifolds with a metric tensor compatible with the flow, it is shown that the associated metric factor is in general a time-dependent solution of the generalized Liouville equation.

non-Hamiltonian dynamics ergodic theory applied differential forms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).Google Scholar
  2. [2]
    J.W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, 1902).Google Scholar
  3. [3]
    R.C. Tolman, The Principles of Statistical Mechanics (Oxford University Press, Oxford, 1938).Google Scholar
  4. [4]
    J. Liouville, Sur la Théorie de la Variation des constantes arbitraires, J. Math. Pures Appl. 3 (1838) 342-349.Google Scholar
  5. [5]
    R. Abraham and J.E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, MA, 1978).Google Scholar
  6. [6]
    B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980).Google Scholar
  7. [7]
    R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications (Springer, New York, 1988).Google Scholar
  8. [8]
    B.A Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry – Methods and Applications, Part 1. The Geometry of Surfaces, Transformation Groups, and Fields (Springer, New York, 1992).Google Scholar
  9. [9]
    T. Frankel, The Geometry of Physics (Cambridge University Press, Cambridge, 1997).Google Scholar
  10. [10]
    J.V. José and E.J. Saletan, Classical Dynamics (Cambridge University Press, Cambridge, 1998).Google Scholar
  11. [11]
    J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry (Springer, New York, 1999).Google Scholar
  12. [12]
    S.F. Singer, Symmetry in Mechanics (Birkhäuser, New York, 2001).Google Scholar
  13. [13]
    S. Guiasu, La méchanique statistique non conservative, Rev. Roum. Math. Pures Appl. 11 (1966) 541-557.Google Scholar
  14. [14]
    G. Gerlich, Die Verallgemeinerte Liouville-Gleichung, Physica 69 (1973) 458-466.Google Scholar
  15. [15]
    W.-H. Steeb, Generalized Liouville equation, entropy and dynamic systems containing limit cycles, Physica A 95 (1979) 181-190.Google Scholar
  16. [16]
    J. Fronteau, Vers une description non conservative de l'évolution en physique, Hadronic J. 2 (1979) 727-829.Google Scholar
  17. [17]
    M. Grmela, J. Fronteau and A. Tellez-Arenas, Inverse Liouville problem, Hadronic J. 3 (1980) 1209-1241.Google Scholar
  18. [18]
    W.-H. Steeb, A comment on the generalized Liouville equation, Found. Phys. 10 (1980) 485-493.Google Scholar
  19. [19]
    J. Fronteau, Liouville's theorem as a link between different viewpoints, Hadronic J. 5 (1982) 577-592.Google Scholar
  20. [20]
    L. Andrey, The rate of entropy change in non-Hamiltonian systems, Phys. Lett. A 111 (1985) 45-46.Google Scholar
  21. [21]
    L. Andrey, Note concerning the paper “The rate of entropy change in non-Hamiltonian systems”, Phys. Lett. A 114 (1986) 183-184.Google Scholar
  22. [22]
    J.D. Ramshaw, Remarks on entropy and irreversibility in non-Hamiltonian systems, Phys. Lett. A 116 (1986) 110-114.Google Scholar
  23. [23]
    D.J. Evans and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, New York, 1990).Google Scholar
  24. [24]
    W.G. Hoover, Computational Statistical Mechanics (Elsevier, New York, 1991).Google Scholar
  25. [25]
    G.P. Morriss and C.P. Dettmann, Thermostats: Analysis and application, Chaos 8 (1998) 321-336.Google Scholar
  26. [26]
    J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999).Google Scholar
  27. [27]
    S. Nosé, Constant temperature molecular dynamics methods, Prog. Theor. Phys. Suppl. 103 (1991) 1-46.Google Scholar
  28. [28]
    C.J. Mundy, S. Balasubramanian, K. Bagchi, M.E. Tuckerman, G.J. Martyna and M.L. Klein, Nonequilibrium Molecular Dynamics, Reviews in Computational Chemistry, Vol. 14 (Wiley/VCH, New York, 2000) pp. 291-397.Google Scholar
  29. [29]
    B.L. Holian, W.G. Hoover and H.A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomic dynamics, Phys. Rev. Lett. 59 (1987) 10-13.Google Scholar
  30. [30]
    W.G. Hoover, H.A. Posch, K. Aoki and D. Kusnezov, Remarks on non-Hamiltonian statistical mechanics: Lyapunov exponents and phase space dimensionality loss, Europhys. Lett. 60 (2002) 337-341.Google Scholar
  31. [31]
    J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys 57 (1985) 617-656.Google Scholar
  32. [32]
    D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys. 95 (1999) 393-468.Google Scholar
  33. [33]
    W.-H. Steeb, The Lie derivative, invariance conditions and physical laws, Z. Naturforsch. A 33 (1978) 742-748.Google Scholar
  34. [34]
    B.L. Holian, G. Ciccotti, W.G. Hoover, B. Moran and H.A. Posch, Nonlinear-response theory for time-independent fields: Consequences of the fractal nonequilibrium distribution function, Phys. Rev. A 39 (1989) 5414-5421.Google Scholar
  35. [35]
    M.E. Tuckerman, C.J. Mundy and M.L. Klein, Toward a statistical thermodynamics of steady states, Phys. Rev. Lett. 78 (1997) 2042-2045.Google Scholar
  36. [36]
    M.E. Tuckerman, C.J. Mundy and G.J. Martyna, On the classical statistical mechanics of non-Hamiltonian systems, Europhys. Lett. 45 (1999) 149-155.Google Scholar
  37. [37]
    M.E. Tuckerman, Y. Liu, G. Ciccotti and G.J. Martyna, Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, J. Chem. Phys. 115 (2001) 1678-1702.Google Scholar
  38. [38]
    P. Reimann, Comment on “Toward a statistical thermodynamics of steady states”, Phys. Rev. Lett. 80 (1998) 4104.Google Scholar
  39. [39]
    W.G. Hoover, D.J. Evans, H.A. Posch, B.L. Holian and G.P. Morriss, Comment on “Toward a statistical thermodynamics of steady states”, Phys. Rev. Lett. 80 (1998) 4103.Google Scholar
  40. [40]
    M.E. Tuckerman, C.J. Mundy and M.L. Klein, Reply to comment on “Toward a statistical thermodynamics of steady states”, Phys. Rev. Lett. 80 (1998) 4105-4106.Google Scholar
  41. [41]
    W.G. Hoover, Liouville's theorems, Gibbs' entropy, and multifractal distributions for nonequilibrium steady states, J. Chem. Phys. 109 (1998) 4164-4170.Google Scholar
  42. [42]
    D.J. Evans, D.J. Searles, W.G. Hoover, C.G. Hoover, B.L. Holian, H.A. Posch and G.P. Morriss, Comment on “Modified nonequilibrium dynamics for fluid flows with energy conservation [J. Chem. Phys. 106 (1997) 5615]”, J. Chem. Phys. 108 (1998) 4351-4352.Google Scholar
  43. [43]
    M.E. Tuckerman, C.J. Mundy, S. Balasubramanian and M.L. Klein, Response to “Comment on ‘Modified nonequilibrium molecular dynamics for fluid flows with energy conservation’ [J. Chem. Phys. 108 (1998) 4351]”, J. Chem. Phys. 108 (1998) 4353-4354.Google Scholar
  44. [44]
    W.-J. Tzeng and C.-C. Chen, The statistical thermodynamics of steady states, Phys. Lett. A 246 (1998) 52-54.Google Scholar
  45. [45]
    W.G. Hoover, The statistical thermodynamics of steady states, Phys. Lett. A 255 (1999) 37-41.Google Scholar
  46. [46]
    J.D. Ramshaw, Remarks on non-Hamiltonian statistical mechanics, Europhys. Lett. 59 (2002) 319-323.Google Scholar
  47. [47]
    I.P. Cornfeld, S.V. Fomin and Y.G. Sinai, Ergodic Theory (Springer, New York, 1982).Google Scholar
  48. [48]
    Y. Alhassid and R.D. Levine, Collision experiments with partial resolution of final states: Maximum entropy procedure and surprisal analysis, Phys. Rev. C 20 (1979) 1775-1788.Google Scholar
  49. [49]
    G. Sardanashvily, The Lyapunov stability of first order dynamics equations with respect to time-dependent Riemannian metrics, Preprint (2002).Google Scholar
  50. [50]
    G. Sardanashvily, The Lyapunov stability of first order dynamics equations with respect to time-dependent Riemannian metrics. An example, Preprint (2002).Google Scholar
  51. [51]
    A. Sergi, Non-Hamiltonian equilibrium statistical mechanics, Phys. Rev. E 67 (2003) 021101-021107.Google Scholar
  52. [52]
    A. Sergi and M. Ferrario, Non-Hamiltonian equations of motion with a conserved energy, Phys. Rev. E 64 (2001) 056125-056129.Google Scholar
  53. [53]
    M. Pettini, Geometrical hints for a nonperturbative approach to Hamiltonian dynamics, Phys. Rev. E 47 (1993) 828-850.Google Scholar
  54. [54]
    L. Casetti, M. Pettini and E.G.D. Cohen, Geometric approach to Hamiltonian dynamics and statistical mechanics, Phys. Rep. 337 (2000) 238-341.Google Scholar
  55. [55]
    G.S. Ezra, Geometric approach to response theory in non-Hamiltonian systems, J. Math. Chem. 32 (2002) 339-359.Google Scholar
  56. [56]
    M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).Google Scholar
  57. [57]
    R.D. Levine and C.E. Wulfman, A unified description of regular and chaotic motion in classical mechanics, Chem. Phys. Lett. 87 (1982) 105-108.Google Scholar
  58. [58]
    W.L. Burke, Applied Differential Geometry (Cambridge University Press, Cambridge, 1985).Google Scholar
  59. [59]
    G. Gallavotti and E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74 (1995) 2694-2697.Google Scholar
  60. [60]
    A. Lasota and M.C. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985).Google Scholar
  61. [61]
    C.A. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1 (Academic Press, New York, 1991).Google Scholar
  62. [62]
    J.D. Ramshaw, Microscopic irreversibility and Gibbs entropy, J. Non-Equil. Therm. 16 (1991) 33-38.Google Scholar
  63. [63]
    W.G. Hoover, Canonical dynamics: Equilibrium phase space distributions, J. Chem. Phys. 31 (1985) 1695-1697.Google Scholar
  64. [64]
    H.A. Posch, W.G. Hoover and F.J. Vesely, Canonical dynamics of the Nosé oscillator: Stability, order and chaos, Phys. Rev. A 33 (1986) 4253-4265.Google Scholar
  65. [65]
    H.A. Posch and W.G. Hoover, Time-reversible dissipative attractors in three and four space dimensions, Phys. Rev. E 55 (1997) 6803-6810.Google Scholar
  66. [66]
    K. Geist, U. Parlitz and W. Lauterborn, Comparison of different methods for computing Lyapunov exponents, Prog. Theor. Phys. 83 (1990) 875-893.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Gregory S. Ezra
    • 1
  1. 1.Department of Chemistry and Chemical Biology, Baker LaboratoryCornell UniversityIthacaUSA

Personalised recommendations