Skip to main content
Log in

Resolving the Yang-Yang Dilemma in 3He Near the Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A challenging problem is to experimentally resolve the Yang-Yang dilemma for fluids-whether the critical singularity of the isochoric heat capacity is shared between the second temperature derivatives of pressure and chemical potentials. In the lattice-gas model, which serves as a well-established guidance to study fluid criticality, the divergence of the second derivative of pressure is solely responsible for the heat capacity anomaly. If it is proven that the heat capacity singularity is shared between the pressure and chemical potential derivatives, a revision of the conventional scaling theory for fluids based on the analogy between fluids and lattice-gas model will be required. Thus far, experiments on real fluids have been inconclusive, in particular, because of possible impurity effects and the intrinsic vapor-liquid asymmetry. A study of the 3He isotope gives a unique opportunity to resolve the Yang-Yang dilemma. In 3He all other impurities except 4He are frozen out. The almost perfect purity of the available 3He samples (typically less than 1 ppm of 4He in 3He) enables the elimination or quantitative study of impurity effects. Also the well-known symmetry of the 3He coexistence curve implies an absence of confluent singularities caused by liquid-gas asymmetry. In this paper we reanalyze early experimental data of near-critical 3He and show that they are internally not completely consistent. While the second derivative of chemical potential obtained from the density dependence of the two-phase isochoric heat capacity does not show a noticeable anomaly, the analysis of the same property obtained by combining the PVT and heat capacity implies the existence of the Yang-Yang anomaly. An unambiguous test of the Yang-Yang dilemma will require more accurate heat-capacity measurements closer to the critical point. To thoroughly distinguish between these alternatives one may ultimately require a microgravity experiment that will allow measurements very close to the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Domb and M.S. Green,eds.,Phase Transitions and Critical Phenomena,Academic, New York (1976),Vol.6.

    Google Scholar 

  2. M.E. Fisher,in Critical Phenomena,Lecture Notes in Physics 186,F.J.W. Hahn ed., Springer,Berlin (1982),p.1.

  3. T.D. Lee and C.N. Yang,Phys.Rev.87,410 (1952).

    Google Scholar 

  4. J.V. Sengers and J.M.H. Levelt Sengers,in Progress in Liquid Physics,C.A. Croxton ed.,Wiley, New York (1978),p.103.

    Google Scholar 

  5. M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov,and J.V. Sengers,Phys.Rev.E 51, 1199 (1995).

    Google Scholar 

  6. N.D. Mermin and J.J. Rehr,Phys.Rev.Lett.26,1155 (1977);J.J.Rehr and N.D. Mermin,Phys.Rev.A 8,472 (1973).

    Google Scholar 

  7. M. Ley-Koo and M.S. Green,Phys.Rev.A 16,2483 (1977).

    Google Scholar 

  8. M.A. Anisimov and J.V. Sengers,in Equations of State for Fluids and Fluid mixtures, J.V. Sengers, R.F. Kayser, C.J. Peters,and H.J. White,Jr.eds.,Elsevier, Amsterdam (2000),p.381.

    Google Scholar 

  9. M.E. Fisher,Rev.Mod.Phys.70,653 (1998).

    Google Scholar 

  10. V.A. Agayan, M.A. Anisimov,and J.V. Sengers,Phys.Rev.E 64,0261125 (2001).

    Google Scholar 

  11. J.F. Nicoll,Phys.Rev.A 24,2203 (1981).

    Google Scholar 

  12. M. Ley-Koo and M.S. Green,Phys.Rev.A 23,2650 (1981).

    Google Scholar 

  13. F.C. Zhang and R.K.P. Zia,J.Phys.A 15,3303 (1982).

    Google Scholar 

  14. K.E. Neuman and E.K. Riedel,Phys.Rev.B 30,6615 (1984).

    Google Scholar 

  15. A. Kostrowicka Wyczalkowska, M.A. Anisimov,and J.V. Sengers,J.Chem.Phys.116, 4202 (2002).

    Google Scholar 

  16. C. Pittman, T. Doiron,and H. Meyer,Phys.Rev.B 20(9),3678 (1979).

    Google Scholar 

  17. M. Barmatz, Inseob Hahn, Fang Zhong, M.A. Anisimov,and V.A. Agayan,J.Low Temp.Phys.121,633,(2000).

    Google Scholar 

  18. C.N. Yang and C.P. Yang,Phys.Rev.Lett.13,303 (1964).

    Google Scholar 

  19. M.E. Fisher and G. Orkoulas,Phys.Rev.Lett.85,696 (2000).

    Google Scholar 

  20. G. Orkoulas, M.E. Fisher,and C. Üstün,J.Chem.Phys. 113,7530 (2000).

    Google Scholar 

  21. G. Orkoulas, M.E. Fisher,and A.Z. Panagiotopoulos,in Computer Simulation Studies in Condensed Matter Physics XIII,D.P. Landau, S.P. Lewis,and H.B. Schüttler eds., Springer, Berlin (2000),p.167.

    Google Scholar 

  22. G. Orkoulas, M.E. Fisher,and A.Z. Panagiotopoulos,Phys.Rev.E 13,051507 (2001).

    Google Scholar 

  23. M. Vicentini-Missoni, J.M.H. Levelt-Sengers,and M.S. Green,J.Res.N.B.S.73A, 563 (1969).

    Google Scholar 

  24. M.A. Anisimov, V.G. Beketov, V.P. Voronov, V.B. Nagaev,and V.A. Smirnov,in Ther-mophysical Properties of Substances(in Russian),USSR Bureau of Standards, Moscow, 16,48 (1982).

    Google Scholar 

  25. Kh. Amirkhanov and A.M. Kerimov,Teploenergetica 10(8)64 (1963).

    Google Scholar 

  26. A.V. Voronel,in Phase Transitions and Critical Phenomena,Vol.5B,C. Domb and M. S. Green eds.,Academic Press, New York (1976),p.343.

    Google Scholar 

  27. G.R. Brown and H. Meyer,Phys.Rev.A 6,364 (1972).

    Google Scholar 

  28. I.M. Abdulagatov, L.N. Levina, Z.R. Zakaryaev,and O.N. Mamchenkova,Fluid Phase Equilib.127,205 (1997).

    Google Scholar 

  29. E.M. Gaddy and J.A. White,Phys.Rev.A 26,2218 (1982).

    Google Scholar 

  30. N.G. Polikhronidi, R.G. Batyrova,and I.M. Abdulagatov,Int.J.Thermophys.21,1073 (2000).

    Google Scholar 

  31. R.P. Behringer, T. Doiron,and H. Meyer,J.Low Temp.Phys.24(3/4),315 (1976).

    Google Scholar 

  32. Y.C. Kim, M.E. Fisher,and G. Orkoulas,Phys.Rev.E 67,061506 (2003).

    Google Scholar 

  33. T. Doiron, R.P. Behringer,and H. Meyer,J.Low Temp.Phys.24(3/4),345 (1976).

    Google Scholar 

  34. R.P. Behringer,Ph.D.Thesis,p.99,Duke University (1995).

  35. F. Zhong and H. Meyer,Phys.Rev.E 51,3223 (1995).

  36. M.E. Fisher,Phys.Rev.176,237 (1968).

    Google Scholar 

  37. M.A. Anisimov, E.E. Gorodetskii,and N.G. Shmakov,Sov.Phys.JETP 36,1143 (1973).

    Google Scholar 

  38. J.C. Rainwater,in Supercritical Fluid Technology,T.J. Bruno and J.F. Ely eds.,CRC Press, Boca Raton,Fl (1991),p.57.

    Google Scholar 

  39. M.R. Moldover and J.S. Gallagher,AIChE J. 24,267 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisimov, M.A., Zhong, F. & Barmatz, M. Resolving the Yang-Yang Dilemma in 3He Near the Critical Point. Journal of Low Temperature Physics 137, 69–88 (2004). https://doi.org/10.1023/B:JOLT.0000044235.12902.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000044235.12902.f3

Navigation