Skip to main content
Log in

Memory Effects in Superfluid Vortex Dynamics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The dissipative dynamics of a vortex line in a superfluid is investigated within the frame of a non-Markovian quantal Brownian motion model. Our starting point is a recently proposed interaction Hamiltonian between the vortex and the superfluid quasiparticle excitations, which is generalized to incorporate the effect of scattering from fermion impurities (3He atoms). Thus, a non-Markovian equation of motion for the mean value of the vortex position operator is derived within a weak-coupling approximation. Such an equation is shown to yield, in the Markovian and elastic scattering limits, a 3He contribution to the longitudinal friction coefficient equivalent to that arising from the Rayfield–Reif formula. Simultaneous Markov and elastic scattering limits are found, however, to be incompatible, since an unexpected breakdown of the Markovian approximation is detected at low cyclotron frequencies. Then, a non-Markovian expression for the longitudinal friction coefficient is derived and computed as a function of temperature and 3He concentration. Such calculations show that cyclotron frequencies within the range 0.01–0.03 ps −1 yield a very good agreement to the longitudinal friction figures computed from the Iordanskii and Rayfield–Reif formulas for pure 4He, up to temperatures near 1 K. A similar performance is found for nonvanishing 3He concentrations, where the comparison is also shown to be very favourable with respect to the available experimental data. Memory effects are shown to be weak and increasing with temperature and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  2. P. Nozieres and D. Pines, The Theory of Quantum Liquids (Addison-Wesley, New York, 1990), Vol. II, Chap. 8.

  3. J. M. Duan, Phys. Rev. B 49, 12381 (1994).

    Article  Google Scholar 

  4. D. P. Arovas and J. A. Freire, Phys. Rev. B 55, 1068 (1997).

    Article  Google Scholar 

  5. J.-M. Tang, Intl. J. Mod. Phys. B 15, 1601 (2001).

    Google Scholar 

  6. W. F. Vinen, Phys. Rev. B 64, 134520 (2001).

    Google Scholar 

  7. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low. Temp. Phys. 52, 189 (1983).

    Google Scholar 

  8. C. F. Barenghi, R. J. Donnelly, and, W. F. Vinen, Phys. Fluids 28, 498 (1985).

    Article  Google Scholar 

  9. W. I. Glaberson and R. J. Donnelly, in Progress in Low Temperature Physics IX. ed. D. F. Brewer (North-Holland, Amsterdam, 1986). Chap. 1, pp. 1–142.

    Google Scholar 

  10. F. R. Hama, Phys. Fluids 6, 526 (1963); R. J. Arms and F. R. Hama, Phys. Fluids 8, 553 (1965).

  11. R. A. Ashton and W. I. Glaberson, Phys. Rev. Lett. 42, 1062 (1979).

    Google Scholar 

  12. A. L. Fetter, Phys. Rev. 186,128 (1969).

    Google Scholar 

  13. E. B. Sonin, Zh. Éksp. Teor. Fiz. 69, 921 (1975) [Sov. Phys. JETP 42, 469 (1976)].

    Google Scholar 

  14. G. W. Rayfield and F. Reif, Phys. Rev. 136, A 1194 (1964).

    Google Scholar 

  15. L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 35, 1271 (1958) [Sov. Phys. JETP 8, 888 (1959)].

    Google Scholar 

  16. S. V. Iordanskii, Zh. Éksp. Teor. Fiz. 49, 225 (1965) [Sov. Phys. JETP 22, 160 (1966)].

    Google Scholar 

  17. H. M. Cataldo and D. M. Jezek, Phys. Rev. B 65, 184523 (2002).

    Google Scholar 

  18. A very simple quantum mechanical model which exhibits the basic features of a non-Markovian dynamics corresponds to the decay of a discrete state, resonantly coupled to a continuum of final states, see C. Cohen Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Vol. II, Chap, XIII.

  19. F. Haake and R. Reibold, Phys, Rev. A 32, 2462 (1985).

    Google Scholar 

  20. G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. A 37, 4419 (1988).

    Google Scholar 

  21. H. M. Cataldo, Physica A 165, 249 (1990).

    Google Scholar 

  22. H. M. Cataldo, Phys. Lett, A, 148, 246 (1990).

    Article  Google Scholar 

  23. G. W. Ford and R. F. O'Connell, Phys, Lett. A 157, 217 (1991).

    Google Scholar 

  24. G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys, Rev. A 36, 1466 (1987).

    Google Scholar 

  25. A. V. Bobylev, F. A. Maaø, A. Hansen, and E. H. Hauge, Phys. Rev. Lett. 75, 197 (1995).

    Google Scholar 

  26. A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. Lett. 89, 266804 (2002).

    Google Scholar 

  27. H. M. Cataldo, M. A. Despósito, E. S. Hernández, and D. M. Jezek, Phys. Rev.B 55, 3792 (1997).

    Google Scholar 

  28. H. M. Cataldo, M. A. Despósito, E. S. Hernández, and D. M. Jezek, Phys. Rev. B 56, 8282 (1997).

    Article  Google Scholar 

  29. H. M. Cataldo, M. A. Despósito, and D. M. Jezek, J. Phys. Condens. Matter 11, 10277 (1999).

    Google Scholar 

  30. R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II. Non-equilibrium statistical mechanics (Springer, Berlin, 1985).

    Google Scholar 

  31. See for instance, R. Balescu, Statistical mechanics of charged particles (Wiley, New York, 1963) App. 2.

    Google Scholar 

  32. J.D. P. Van Dijk, G. M. Postma, J.Wiebes, and H. C. Kramers, Physica B & C 85B, 85 (1977).

  33. W. Hsu, D. Pines, and C. H. Aldrich, III, Phys. Rev. B 32, 7179 (1985).

    Google Scholar 

  34. F. Pistolesi, Phys. Rev. Lett. 81, 397 (1998).

    Google Scholar 

  35. E. B. Sonin, Phys. Rev. B 55, 485 (1997).

    Google Scholar 

  36. C. Wexler and D. J. Thouless, Phys. Rev, B 58, R8897 (1998).

    Article  Google Scholar 

  37. J.-Y. Fortin, Phys. Rev. B 63, 174502 (2001).

    Google Scholar 

  38. D. J. Thouless, M. R. Geller, W. F. Vinen, J.-Y. Fortin, and S. W. Rhee, Phys. Rev. B 63, 224504 (2001).

    Google Scholar 

  39. D. J. Thouless, P. Ao, and Q. Niu, Phys. Rev. Lett. 76, 3758 (1996).

    Google Scholar 

  40. G. W. Rayfield, Phys. Rev. 168, 222 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cataldo, H.M., Jezek, D.M. Memory Effects in Superfluid Vortex Dynamics. Journal of Low Temperature Physics 136, 217–239 (2004). https://doi.org/10.1023/B:JOLT.0000038523.79225.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000038523.79225.75

Navigation