Skip to main content
Log in

Demonstration of a Robust Pseudogap in a Three-Dimensional Correlated Electronic System

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We outline a partial-fractions decomposition method for determining the one-particle spectral function and single-particle density of states of a correlated electronic system on a finite lattice in the non self-consistent T-matrix approximation to arbitrary numerical accuracy, and demonstrate the application of these ideas to the attractive Hubbard model. We then demonstrate the effectiveness of a finite-size scaling ansatz which allows for the extraction of quantities of interest in the thermodynamic limit from this method. In this approximation, in one or two dimensions, for any finite lattice or in the thermodynamic limit, a pseudogap is present and its energy diverges as T c is approached from above; this is an unphysical manifestation of using an approximation that predicts a spurious phase transition in one or two dimensions. However, in three dimensions one expects the transition predicted by the approximation to represent a true continuous phase transition, and whether or not a pseudo gap exists in the thermodynamic limit in three dimensions remains an open question. We have applied our method to the attractive Hubbard model on a three-dimensional simple cubic lattice, and find, similar to previous work, that for intermediate coupling a prominent pseudogap is found in the single-particle density of states, and this gap persists over a large temperature range. In addition, we also show that for weak coupling (an on-site Hubbard energy equal to one quarter the bandwidth) a pseudogap is also present. The pseudogap energy at the transition temperature is almost a factor of three larger than the T = 0 BCS gap for intermediate coupling, whereas for weak coupling the pseudogap and T = 0 BCS gap energies are essentially equal. These results show that a pseudogap due to superconducting fluctuations occurs in three dimensions even in the weak-coupling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); Phys. Rev. 108, 1175 (1957).

    Google Scholar 

  2. P. W. Anderson, Phys. Rev. 112, 1900 (1958).

    Google Scholar 

  3. N. N. Bogoliubov, N. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity, Consultants Bureau, Inc., New York (1959).

    Google Scholar 

  4. G. Rickayzen, Phys. Rev. 115, 795 (1959).

    Article  Google Scholar 

  5. A. Bardasis and J. R. Schrieffer, Phys. Rev. 121, 1050 (1961).

    Google Scholar 

  6. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958) [Sov. Phys. JETP 7, 996 (1958)].

    Google Scholar 

  7. G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38966 (1960) [Soviet Phys. JETP 11696 (1960)].

    Google Scholar 

  8. See the various articles in Superconductivity, edited by R. D. Parks (Marcel Dekker, New York, 1969).

  9. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  10. A. S. Alexandrov and N. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995), and references therein.

    Google Scholar 

  11. D. Feinberg, S. Ciuchi, and F. de Pasquale, Int. J. Mod. Phys. B 4, 1317 (1990).

    Google Scholar 

  12. D. Emin, Phys. Rev. B 48, 13691 (1993).

    Google Scholar 

  13. J. Ranninger, in Bose-Einstein Condensation, eds. A. Griffin, D.W. Snoke, and S. Stringari,( Cambridge University Press, 1995), p. 393.

  14. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

    Article  Google Scholar 

  15. M. Randeria, in Bose-Einstein Condensation, eds. A. Griffin, D.W. Snoke, and S. Stringari,( Cambridge University Press, 1995), p. 355.

  16. P. B. Allen, in Modern Trends in the Theory of Condensed Matter, Proceedings, Karpacz, 1979, eds. A. Pekalski and J. Przystawa, (Springer Verlag, New York, 1980), p. 388.

    Google Scholar 

  17. V. Ambegaokar, in Superconductivity, ed. R. D. Parks (Marcel Dekker, New York, 1969) Vol. 1, p. 259.

    Google Scholar 

  18. D. J. Thouless, Ann. Phys. 10, 553 (1960).

    Article  Google Scholar 

  19. K. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

    Google Scholar 

  20. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  21. L. P. Kadanoff and P. C. Martin, Phys. Rev 124, 670 (1961).

    Google Scholar 

  22. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

    Google Scholar 

  23. G. Baym, Phys. Rev. 1271391 (1962).

    Google Scholar 

  24. D. M. Eagles, Phys. Rev. 186, 456 (1969).

    Google Scholar 

  25. A. Schmid, Z. Physik 231, 324 (1970).

    Google Scholar 

  26. S. Mar?celja, Phys. Rev. B 1, 2351 (1970). Demonstration of a Robust Pseudogap 215

    Article  Google Scholar 

  27. B. R. Patton, Phys. Rev. Lett. 27, 1273 (1971); PhD thesis (Cornell), 1970.

    Article  Google Scholar 

  28. V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Repts. 349, 2 (2001).

    Google Scholar 

  29. B. Janko, J. Maly, and K. Levin, Phys. Rev. B 56, 11407 (1997);. Kosztin, Q. Chen, B. Janko, and K. Levin, Phys. Rev. B 58, 5936 (1998). See also Q. Chen, K. Levin, and I. Kosztin, Phys. Rev. B 63, 184519 (2001), and references therein.

    Google Scholar 

  30. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989); N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989); N. E. Bickers and S. R. White, Phys. Rev. B 43, 8044 (1991).

    Google Scholar 

  31. S. Verga, F. Marsiglio, and R. J. Gooding (to be submitted).

  32. J. Vilk and A.-M. S. Tremblay, J. de Physique I (France) 7, 1309 (1997).

    Article  Google Scholar 

  33. A. J. Leggett, J. de Physique, C7, 41, 19 (1980); A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, eds. S. Pekalski and J. Przystawa (Springer, Berlin, 1980) p. 13.

  34. P. Nozi`eres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Google Scholar 

  35. S. Schmitt-Rink, C. Varma, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 445 (1989).

    Google Scholar 

  36. J. M. Luttinger, Phys. Rev. 119, 1153 (1960).

    Article  Google Scholar 

  37. J. Serene, Phys. Rev. B 40, 10873 (1989).

    Article  Google Scholar 

  38. A. Tokumitu, K. Miyake, and K. Yamada, Phys. Rev. B 4711988 (1993).

    Article  Google Scholar 

  39. K. S. D. Beach, R. J. Gooding, and F. Marsiglio, Phys. Lett. A 282, 319 (2001).

    Google Scholar 

  40. R. Frèsard, B. Glaser, and P. Wölfle, J. Phys. Cond. Mat. 4, 8565 (1992).

    Article  Google Scholar 

  41. R. Haussmann, Z. Phys. B 91, 291 (1993); R. Haussmann, Phys. Rev. B 49, 12975 (1994).

    Google Scholar 

  42. M. Y. Kagan, R. Frèsard, M. Capezzali, and H. Beck, Phys. Rev. B 57, 5995 (1998).

    Google Scholar 

  43. B. Kyung, E. G. Klepfish, and P. E. Kornilovitch, Phys. Rev. Lett. 80, 3109 (1998).

    Google Scholar 

  44. V. P. Gusynin, V. M. Loktev, and S. G. Sharapov, JETP 88, 685 (1999).

    Article  Google Scholar 

  45. J. R. Engelbrecht and A. Nazarenko, Europhys. Lett. 51, 96 (2000).

    Google Scholar 

  46. D. Rohe and W. Metzner, Phys. Rev. B 63, 224509 (2001).

    Article  Google Scholar 

  47. Y. Yanase and K. Yamada, J. Phys. Soc. Jpn. 70, 1659 (2001).

    Google Scholar 

  48. J. Quintanilla, B. L. Györffy, J. F. Annett, and J. P. Wallington, Phys. Rev. B 66, 214526 (2002).

    Article  Google Scholar 

  49. P. Pieri and G. C. Strinati, Phys. Rev. B 61, 15370 (2000).

    Google Scholar 

  50. S. Allen and A.-M. S. Tremblay, Phys. Rev. B 64, 075115 (2001).

    Google Scholar 

  51. B. Kyung, S. Allen, and A.-M. S. Tremblay, Phys. Rev. B64, 075116 (2001).

    Google Scholar 

  52. We make this statement with the understanding that we are not attempting to discuss Kosterlitz-Thouless physics in this paper.

  53. T. Timusk and B. W. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  Google Scholar 

  54. J. E. Hirsch, J. Stat. Phys. 43, 841 (1986); Phys. Rev. B 351851 (1987).

    Google Scholar 

  55. S. Robaszkiewicz, R. Micnas, and K. A. Chao, Phys. Rev. B 24, 1579 (1981); Phys. Rev. B 24, 4018 (1981); Phys. Rev. B 26, 3915 (1982). R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990). R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J. Rodrguez-Núlbez, and H. Beck, Phys. Rev. B 52, 16223 (1995).

    Google Scholar 

  56. Q. Chen, I. Kosztin, B. Jankó, and K. Levin, Phys. Rev. B 59, 7083 (1999).

    Google Scholar 

  57. G. Preosti, Y. M. Vilk, and M. R. Norman, Phys. Rev. B 59, 1474 (1999).

    Google Scholar 

  58. J. R. Engelbrecht and H. Zhao, cond-mat/0110356; J. R. Engelbrecht, H. Zhao, and A. Nazarenko, J. Phys. Chem. Solids 63, 2237 (2002).

    Article  Google Scholar 

  59. G. Rickayzen, Green's Functions and Condensed Matter (Academic Press, Toronto, 1980).

    Google Scholar 

  60. H. Fukuyama, O. Narikiyo, and Y. Hasegawa, J. Phys. Soc. Jpn. 60, 372 (1991); H. Fukuyama, Y. Hasegawa, and O. Narikiyo, J. Phys. Soc. Jpn. 60, 2013 (1991).

    Google Scholar 

  61. F. Marsiglio and R. J. Gooding (unpublished).

  62. This terminology was first used in T. Gherghetta and Y. Nambu, Phys. Rev. B 49, 740 (1994).

    Article  Google Scholar 

  63. Due to several important technicalities, e.g., to ensure that we purge spurious double poles from any expansion generated by this algorithm, a very high numerical accuracy is required. We have coded in MapleVr5.1 to achieve the extraction of these numbers, 216 R. J. Gooding et al.and have used a relative accuracy as high as 10-150, noting that such a number can be required for converged and accurate pole and residue evaluations.

  64. N. D. Mermin and Wagner, Phys. Rev. Lett. 17, 1133, 1307 (1966); P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

    Google Scholar 

  65. A. Moreo, D. J. Scalapino, R. L. Sugar, S. R. White, and N. E. Bickers, Phys. Rev. B 41, 2313(1990).

    Google Scholar 

  66. J. R. Schrieffer, X.-G. Wen, and S. C. Zhang, Phys. Rev. B 39, 11663 (1989).

    Google Scholar 

  67. We note that to complete the U /t= 3 analysis we have had to use a smaller broadening parameter of 0.12t, in contrast to the value of 0.36tused for U /t= 6. This is because the energy scales are much smaller, and a broadening of 0.36tis in fact more than 50% of the BCS gap; to properly resolve the energies for smaller U /twe thus used a smaller broadening.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gooding, R.J., Marsiglio, F., Verga, S. et al. Demonstration of a Robust Pseudogap in a Three-Dimensional Correlated Electronic System. Journal of Low Temperature Physics 136, 191–216 (2004). https://doi.org/10.1023/B:JOLT.0000038522.13017.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000038522.13017.42

Navigation