Skip to main content
Log in

The Microwave Properties of YBCO Photonic Crystal Structure Microstrip

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have fabricated three YBCO microstrip lines. One is conventional microstrip line. Two are etched periodic holes. The thickness for the microstrip lines with and without holes are 0.3 and 0.45μm, respectively. The periodic holes in the microstrip line change the microwave properties more significantly in the case of thin film than thick film. We have also fabricated YBCO photonic bandgap (PBG) microstrip circular disk filter in film with thickness 0.7,μm. The center frequency of the pass band filter is 12.23,GHz. The filter provides band width 1.6% and low insertion loss about −0.5 d B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Yablonovich, Phys. Rev. Lett. 58(20), 2059–2062.

  2. Y. Qian and T. Itoh, Proc. of the Microwave Conference, 1999 Asia Pacific, Vol. 2, 1999, pp. 315–318.

    Google Scholar 

  3. V. Radisic, Y. Qian, R. Coccoioli, Tatsuo Itoh, IEEE Microwave Guided Wave Lett. 8(2), 69–71 (1998).

    Google Scholar 

  4. J. Sor, Y. Qian, and T. Itoh, IEEE Trans. on MTT. 49(12), 2336–2341 (2001).

    Google Scholar 

  5. R. Coccioli and T. Itoh, IEEE MTT-S Symp. Dig. 1259–1262 (1998).

  6. Y. Horii and M. Tsutsumi, IEEE Microwave Guided Wave Lett. 9, 13–15 (1999).

    Google Scholar 

  7. K. P. Ma, J. Kim and F. R. Yang et al., IEEE MTT-S Int. Microwave Symp. Dig. 1, 73–76 (1999).

    Google Scholar 

  8. V. Radisic, Y. Qian, and T. Itoh, IEEE Microwave Guided Wave Lett. 8, 13–14 (1998).

    Google Scholar 

  9. T. Lopetegi et al., in Band Pass Filter in Microstrip Technology using Photonic Bandgap Reflector, Proc. Of the 29th European Microwave Conference(Munich, Germany) pp. 337–340 (1999).

  10. Q. Xue, K. M. Shum, and C. H. Chan, IEEE Microwave Guided Wave Lett. 10(10), 403–405 (2000).

    Google Scholar 

  11. M. J. Lancaster and F. Huang et al., IEEE Trans. on MTT. 44(7) 1339–1346 (1996).

    Google Scholar 

  12. T. M. Pond, K. R. Carroll, and E. J. Cukanskas, IEEE Trans. Magn. 27(2), 2696–2699 (1991).

    Google Scholar 

  13. H. C. H. Cheung and F. Huang et al., IEEE Trans. Appl. Supercond. 5(2), 2675–2677 (1995).

    Google Scholar 

  14. F. Huang and H. C. H. Cheung et al., IEEE Trans. Appl. Supercond. 3(1), 2778–2781 (1993).

    Google Scholar 

  15. B. T. Tan, S. T. Chew, M. S. Leong, and B. L. Ooi, IEEE Microwave Wireless Comp. Lett. 12(7), 252–254 (2002).

    Google Scholar 

  16. M. T. de Melo and A. Belfort et al., Physica C 341-348, 2673–2674 (2000).

    Google Scholar 

  17. J. Lu and C. K. Ong, Physica C322, 186–192 (1999).

    Google Scholar 

  18. D. M. Sheen, S. M. Ali, D. E. Oates, R. S. Withers, and J. A. Kong, IEEE Trans. on Appl. Supercond. 11(2), 108–115 (1991).

    Google Scholar 

  19. T. Dahm and J. Oppenländer, IEEE Trans. Appl. Supercond. 11(1), 1392–1395 (2001).

    Google Scholar 

  20. R. Inada and P. Zhang et al., Physica C382, 117–121 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HF., Mao, JF., Hu, ZY. et al. The Microwave Properties of YBCO Photonic Crystal Structure Microstrip. Journal of Low Temperature Physics 136, 117–125 (2004). https://doi.org/10.1023/B:JOLT.0000035373.96684.29

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000035373.96684.29

Navigation