Skip to main content
Log in

Liquid Helium up to 160 bar

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have used an acoustic technique to pressurize liquid helium 4 up to 163 ± 20 bar. This is far above the liquid–solid equilibrium pressure Pm, which is 25.3 bar in the low, temperature domain, where the experiment was performed (0.05 K < T < 1 K). This is also far above 65 bar, the prediction of the standard theory for homogeneous nucleation of solid helium. However, no solidification was observed. We discuss our experimental method and the metastability of liquid helium at such very large overpressures. We also propose improvements of our experiment, in order to reach a possible instability limit of liquid helium 4 around 200 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Balibar, T. Mizusaki, and Y. Sasaki, J. Low Temp. Phys. 120, 293 (2000).

    Google Scholar 

  2. X. Chavanne, S. Balibar, and F. Caupin, Phys. Rev. Lett. 86, 5506 (2001).

    Google Scholar 

  3. X. Chavanne, S. Balibar, and F. Caupin, J. Low Temp. Phys. 125, 155 (2001).

    Google Scholar 

  4. F. Caupin and S. Balibar, Phys. Rev. B 64, 064507 (2001).

    Google Scholar 

  5. S. Balibar, B. Castaing and C. Laroche, J. Phys. (Paris) Lett. 41, 283 (1980); V.L. Tsymbalenko, J. Low Temp. Phys. 88, 55 (19); J.P. Ruutu, P.J. Hakonen, J.S. Penttila, A. V. Babkin, J. P. Saramaki and E. B. Sonin, Phys. Rev. Lett. 77, 2514 (1996); Y. Sasaki and T. Mizusaki, J. Low Temp. Phys. 110, 491 (1998); T. A. Johnson and C. Elbaum, Phys. Rev. E 62, 975 (2000).

    Google Scholar 

  6. F. Caupin, S. Balibar, and H. J. Maris, Physica B 329-333, 356 (2003).

    Google Scholar 

  7. T. Schneider and C. P. Enz, Phys. Rev. Lett. 27, 1186 (1971).

    Google Scholar 

  8. J. Nissen, E. Bodegom, L. C. Brodie, and J. S. Semura, Phys. Rev. B 40, 6617 (1989).

    Google Scholar 

  9. S. Balibar, X. Chavanne and F. Caupin, Physica B 329-333, 380 (2003).

    Google Scholar 

  10. K. O. Keshishev, A. Ya. Parshin and A. V. Babkin, Zh. Eksp. Teor. Fiz. 80, 716 (1981) [Sov. Phys. JETP 53, 362 (1981)].

    Google Scholar 

  11. J. Bodensohn, K. Nicolai, and P. Leiderer, Z. Phys. B 64, 55 (1986).

    Google Scholar 

  12. S. Balibar, H. Alles and A. Ya. Parshin, submitted to Rev. Modern Phys.(2004).

  13. L. Darrasse, Rev. Sci. Instrum. 53, 1561 (1982).

    Google Scholar 

  14. X. Chavanne, S. Balibar, F. Caupin, C. Appert, and D. d'Humires, J. Low Temp. Phys. 126, 643 (2002).

    Google Scholar 

  15. C. Appert, C. Tenaud, X. Chavanne, S. Balibar, F. Caupin, and D. d'Humi`eres, Eur. Phys. J. B 35, 531 (2003).

    Google Scholar 

  16. In Ref. 4, the inertia of the transducer was neglected so that no phase shift was predicted between the excitation voltage and the transducer response. Here, we find a (p/2)phase shift. We are grateful to H. J. Maris who first mentioned this former mistake to us.

  17. H. J. Maris, Phys. Rev. Lett. 66, 45 (1991).

    Google Scholar 

  18. B. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach, Phys. Rev. A 1, 250 (1970).

    Google Scholar 

  19. D. O. Edwards, M. S. Pettersen, and H. Baddar, in Excitations in 2D and 3D Quantum Fluids, eds. A. F. G. Wyatt and H. J. Lauter (Plenum Press, New York, 1991), p.361.

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5, Statistical Physics(Pergamon press, Oxford, 1980), p. 533.

    Google Scholar 

  21. H. J. Maris and F. Caupin, J. Low Temp. Phys. 131, 145 (2003).

    Google Scholar 

  22. P. Leiderer, J. Low Temp. Phys. 87, 247 (1992).

    Google Scholar 

  23. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B 52, 1193 (1995).

    Google Scholar 

  24. H. J. Maris, private communication, unpublished.

  25. K. O. Keshishev, A. Ya. Parshin, and A. V. Babkin, Pis'ma Zh. Eksp. Teor. Fiz 30, 63 (1979) [Sov. Phys. JETP Lett. 30, 56 (1979)]; R. M. Bowley and D. O. Edwards, J. Physique (France) 44, 723 (1983); E. Rolley, C. Guthmann, E. Chevalier, and S. Balibar, J. Low Temp. Phys. 99, 851 (1995).

  26. G. H. Bauer, D. M. Ceperley, and N. Goldenfeld, Phys. Rev. B 61, 9055 (2000).

    Google Scholar 

  27. F. Caupin and S. Balibar, in Liquids Under Negative Pressure, eds., A. R. Imre et al. (Kluwer Academic Publishers, 2002), p. 201.

  28. We have looked for some evidence of the liquid undergoing a superfluid to normal transition at high pressure and low temperature. A change in compressibility at such a transition could show up as some distortion in the shape of the acoustic wave, consequently in the signal from the light scattering by the sound pulse. We have not found convincing evidence that such a distortion occurs at any well defined amplitude of the wave.

  29. H. J. Maris, private communication (2004).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, F., Beaume, G., Hobeika, A. et al. Liquid Helium up to 160 bar. Journal of Low Temperature Physics 136, 93–116 (2004). https://doi.org/10.1023/B:JOLT.0000035372.69378.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000035372.69378.db

Navigation