Skip to main content
Log in

Superfluid Gyrometers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Flexible-wall Helmholtz resonators immersed in superfluids with submicronic apertures and a large parallel channel acting as a pick-up loop have been demonstrated to act as sensitive and stable rotation sensors. Highly sensitive gyrometers are in need to make progress in geodesics and in the acceptation of general relativistic frames of reference. We present an overview of the current research and of the prospective developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W.J. Huiskamp and O.V. Lounasmaa, Rep. Prog. Phys. 36, 423(1973).

    Google Scholar 

  2. B. Kolaczek, H. Schuh, and D. Gambis (eds), High Frequency Oscillations of Earth Rotation, IERS Technical Note 28, Observatoire de Paris, 2000.

  3. E.J. Post, Rev. Mod. Phys. 39, 475(1967).

    Google Scholar 

  4. C.V. Heer, Proc. SPIE 487, 2(1984).

    Google Scholar 

  5. W.W. Chow, J. Gea-Banacloche, L.M. Pedrotti, V.E. Sanders, W. Schleich, M.O. Scully, Rev. Mod. Phys. 57, 61(1985).

    Google Scholar 

  6. G.E. Stedman, Rep. Prog. Phys. 60, 615(1997).

    Google Scholar 

  7. A.A. Michelson, H.G. Gale and F. Pearson, Astrophys. J. 61, 137(1925).

    Google Scholar 

  8. S.A. Werner, J.-L. Staudenmann and R. Collela, Phys. Rev. Lett. 42, 1103(1979).

    Google Scholar 

  9. S.A. Werner, Class. Quantum Grav. 11, A207(1994).

    Google Scholar 

  10. O. Avenel and E. Varoquaux, Czech. J. Phys. 46-S6, 3319(1996).

    Google Scholar 

  11. O. Avenel, P. Hakonen, and E. Varoquaux, Phys. Rev. Lett. 78, 3602(1997).

    Google Scholar 

  12. K. Schwab, N. Bruckner, and R.E. Packard, Nature 386, 585(1997).

    Google Scholar 

  13. A. Lenef, T.D. Hammond, E.T. Smith, M.S. Chapman, R.A. Rubenstein, and D.E. Pritchard, Phys. Rev. Lett. 78, 760(1997).

    Google Scholar 

  14. T.L. Gustavson, P. Bouyer, and M.A. Kasevich, Phys. Rev. Lett. 78, 2046(1997).

    Google Scholar 

  15. T.L. Gustavson, A. Landragin, and M.A. Kasevich, Class. Quantum Grav. 17, 2385(2000).

    Google Scholar 

  16. F. Hasselbach, M. Nicklaus, Phys. Rev. A 48, 143(1993).

    Google Scholar 

  17. R. Neutze and F. Hasselbach, Phys. Rev. A 58, 557(1998).

    Google Scholar 

  18. E. Varoquaux, Superfluid helium interferometry: an introduction, in Bose-Einstein condensates and atom lasers, edited by A. Aspect and J. Dalibard, page 531, C.R. Acad. Sci. Paris, t. 2, Série IV, 2001.

  19. The GP-B spacecraft has suffered delays and is now rescheduled to launch in the Spring 2004. See the site http://einstein.stanford.edu.

  20. As quoted byGustavson et al. 15

  21. I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, and J. Pérez-Mercader, Science 279, 2100(1998).

    Google Scholar 

  22. I. Ciufolini, Class. Quantum Grav. 17, 2369(2000).

    Google Scholar 

  23. M.O. Scully, M.S. Zubairy, and M.P. Haugan, Phys. Rev. A 24, 2009(1981).

    Google Scholar 

  24. Yu. Mukharsky, O. Avenel, and E. Varoquaux, Physica B 280, 287(2000).

    Google Scholar 

  25. J.D. Reppy and C.T. Lane, Phys. Rev. 140, A 106(1965).

    Google Scholar 

  26. E.L. Andronikashvili and Yu.G. Mamaladze, Rev. Mod. Phys. 38, 567(1966).

    Google Scholar 

  27. G.B. Hess and W.M. Fairbank, Phys. Rev. Lett. 19, 216(1967).

    Google Scholar 

  28. Also, rotations and magnetic fields can concurrently affect the same device as shown on a superconducting interferometer by J.E. Zimmerman and J.E. Mercereau, Phys. Rev. Lett. 14, 887(1965). This experiment is the most direct illustration of the equivalence between rotation and magnetic field.

    Google Scholar 

  29. W.F. Vinen, Quantum Fluids, ed. D.F. Brewer, North-Holland, Amsterdam, 1966.

    Google Scholar 

  30. W.F. Vinen, Rep. Prog. Phys. XXI, 61(1968).

    Google Scholar 

  31. P. Hakonen, O.V. Lounasmaa, and J. Simola, Physica B 160, 1(1989).

    Google Scholar 

  32. A.H. Silver and J.E. Zimmerman, Phys. Rev. 157, 317(1967).

    Google Scholar 

  33. P. Nozières, Quantum Fluids, ed. D.F. Brewer, North-Holland, Amsterdam, 1966.

    Google Scholar 

  34. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 55, 2704(1985).

    Google Scholar 

  35. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 60, 416(1988).

    Google Scholar 

  36. K. Sukhatme, Y. Mukharsky, T. Chui and D. Pearson, Nature 411, 280(2001).

    Google Scholar 

  37. E. Dobbs, Helium Three, Oxford University Press, 2000, Sec. 27.3, and references therein.

  38. J.C. Davis and R.E. Packard, Rev. Mod. Phys. 74, 741(2002).

    Google Scholar 

  39. A. Barone and G. Paternò, Physics and Applications of the Josephson Effect, Wiley, NY, 1982.

    Google Scholar 

  40. O.V. Lounasmaa, Experimental Principles and Methods below 1 K, Academic Press London and New-York, 1974.

    Google Scholar 

  41. M. Cerdonio and S. Vitale, Phys. Rev. B 29, 481(1984).

    Google Scholar 

  42. M. Bonaldi, M. Cerdonio, and S. Vitale, Physica B 165–166, 765(1990).

    Google Scholar 

  43. E. Varoquaux, O. Avenel, G.G. Ihas, and R. Salmelin, Physica B 178, 309(1992).

    Google Scholar 

  44. R.E. Packard and S. Vitale, Phys. Rev. B 46, 3540(1992).

    Google Scholar 

  45. G.B. Hess, Nature 359, 192(1992).

    Google Scholar 

  46. S. Stringari, Phys. Rev. Lett. 86, 4725(2001).

    Google Scholar 

  47. O. Avenel, R. Aarts, G.G. Ihas, and E. Varoquaux, Physica B 194–196, 491(1994).

    Google Scholar 

  48. R. Aarts, G.G. Ihas, O. Avenel, and E. Varoquaux, Physica B 194–196, 493(1994).

    Google Scholar 

  49. K. Schwab, J.C. Davis, and R.E. Packard, Czech. J. Phys. 46-S5, 2739(1996).

    Google Scholar 

  50. K. Schwab, The Superfluid 4 He SQUID, PhD thesis, University of California at Berkeley, 1996, unpublished.

  51. O. Avenel, P. Hakonen, and E. Varoquaux, J. Low Temp. Phys. 110, 709(1998).

    Google Scholar 

  52. K. Schwab, N. Bruckner, and R. Packard, J. Low Temp. Phys. 110, 1043(1998).

    Google Scholar 

  53. W. Zimmermann Jr., O. Avenel, and E. Varoquaux, Physica B 165–166, 749(1990).

    Google Scholar 

  54. E. Varoquaux and O. Avenel, Phys. Rev. B 68, 054515(2003).

    Google Scholar 

  55. S. Backhaus and R.E. Packard, Phys. Rev Lett. 81, 1893(1998).

    Google Scholar 

  56. Yu. Mukharsky, O. Avenel, and E. Varoquaux, J. Low Temp. Phys. 113, 915(1998).

    Google Scholar 

  57. N. Bruckner and R. Packard, J. Appl. Phys. 93, 1798(2003).

    Google Scholar 

  58. E. Varoquaux, O. Avenel, P. Hakonen, Y. Mukharsky, Quantum Coherence and Decoherence—ISQM—Tokyo '98, Y.A. Ono and K. Fujikawa, editors, Elsevier Science B.V., 1999.

  59. A. Marchenkov, R.W. Simmonds, S. Backhaus, A. Loshak, J.C. Davis, and R.E. Packard, Phys. Rev. Lett. 83, 3860(1999).

    Google Scholar 

  60. R. Rifkin and B.S. Deaver, Jr, Phys. Rev. B 13, 3894(1976).

    Google Scholar 

  61. E. Varoquaux, O. Avenel, and M. Meisel, Can. J. Phys. 65, 1377(1987).

    Google Scholar 

  62. E. Varoquaux and O. Avenel, Physica Scripta T19B, 445(1987).

    Google Scholar 

  63. B.P. Beecken and W. Zimmermann, Jr., Phys. Rev. 35, 74(1987).

    Google Scholar 

  64. J. Wilks, The Properties of Liquid and Solid Helium, Clarendon Press, Oxford, 1967, p. 40.

    Google Scholar 

  65. P. Carelli and M.-G. Castellano, Physica B 280, 537(2000).

    Google Scholar 

  66. L. Landau and E. Lifschitz, Statistical Physics, Pergamon Press, London, 1958, §121.

    Google Scholar 

  67. J.R. Hook, T.D.C. Bevan, A.J. Manninen, J.B. Cook, A.J. Armstrong, and H.E. Hall, Physica B 210, 251(1995).

    Google Scholar 

  68. R.W. Simmonds, A. Marchenkov, J.C. Davis and R.E. Packard, Physica B 284–288, 283(2000).

    Google Scholar 

  69. R.W. Simmonds, A. Marchenkov, S. Vitale, J.C. Davis, and R.E. Packard, Phys. Rev. Lett. 84, 6062(2000).

    Google Scholar 

  70. Y. Mukharsky, J. Low Temp. Phys. 134, 731(2004).

    Google Scholar 

  71. J.K. Viljas and E.V. Thuneberg, J. Low Temp. Phys. 134, 743(2004).

    Google Scholar 

  72. J. Viljas and E. Thuneberg, cond-mat/0401637.

  73. S. Backhaus, S.V. Pereverzev, A. Loshak, J.C. Davis, and R.E. Packard, Science 278, 1435(1997).

    Google Scholar 

  74. S.V. Pereverzev and J.C. Davis, Czech J. Phys. 46, 109(1996).

    Google Scholar 

  75. P. Astone et al., Class. Quantum Grav. 19, 1905(2002).

    Google Scholar 

  76. R.W. Simmonds, A. Marchenkov, E. Hoskinson, J.C. Davis, and R.E. Packard, Nature 412, 55(2001).

    Google Scholar 

  77. R.W. Simmonds, contributed communication presented orally at the Quantum Fluids and Solids Conference QFS 2001 in Constance (Germany), unpublished.

  78. R. Simmonds, Josephson Weak Links and Quantum Interference in Superfluid 3 He, PhD thesis, University of California at Berkeley, 2002, unpublished.

  79. H.J. Verbeek, E. Van Spronsen, H. Mars, H. Van Beelen, R. De Bryun Ouboter, and K.W. Taconis, Physica 73, 621(1974).

    Google Scholar 

  80. Yu. Mukharsky, O. Avenel, and E. Varoquaux, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avenel, O., Mukharsky, Y. & Varoquaux, E. Superfluid Gyrometers. Journal of Low Temperature Physics 135, 745–772 (2004). https://doi.org/10.1023/B:JOLT.0000029517.55783.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000029517.55783.91

Navigation