Advertisement

Journal of Insect Behavior

, Volume 16, Issue 6, pp 731–745 | Cite as

An Analysis of Single Clutch Paternity in the Burrower Bug Sehirus cinctus Using Microsatellites

  • Jeremy M. BrownEmail author
  • Aneil F. Agrawal
  • Edmund D. Brodie III
Article

Abstract

Recent studies of the burrower bug, Sehirus cinctus, have examined the genetic basis of parental care. An understanding of the burrower bug mating system, and the subsequent pattern of offspring relatedness that this system generates, is critical to further interpret genetic data. To this end, we developed three consistently amplifiable highly polymorphic microsatellite loci and used them to determine genotypic patterns at the level of both the population and the single clutch. We found that all clutches were sired by single males. Further, we find no evidence for inbreeding. We hypothesize that single paternity within a clutch may play an important role in reducing the potential for sibling rivalry, by increasing the relatedness among clutchmates.

microsatellites Cydnidae Hemiptera mating system paternity inbreeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agrawal, A. F., Brodie, E. D., III, and Brown, J. (2001). Parent-offspring coadaptation and the dual genetic control of maternal care. Science 292: 1710–1712.Google Scholar
  2. Andersson, M. B. (1994). Sexual Selection, Princeton University Press, Princeton, NJ.Google Scholar
  3. Arnqvist, G., and Nilsson, T. (2000). The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60: 145–164.Google Scholar
  4. Bennet, J. H., and Binet, F. E. (1956). Association between Mendelian factors with mixed selfing and random mating. Heredity 10: 51–56.Google Scholar
  5. Birkhead, T. R., and Møller, A. P. (1992). Sperm Competition in Birds: Evolutionary Causes and Consequences, Academic Press, London.Google Scholar
  6. Brian, M. V. (1983). Social Insects: Ecology and Behavioral Biology, Chapman and Hall, London.Google Scholar
  7. Briskie, J. V., Naugler, C. T., and Leech, S. M. (1994). Begging intensity of nestling birds varies with sibling relatedness. Proc. Roy. Soc. Lond. B 258: 73–78.Google Scholar
  8. Brown, A. H. D., Feldman, M. W., and Nevo, E. (1980). Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96: 523–536.Google Scholar
  9. Carroll, S. P. (1991). The adaptive significance of mate guarding in the soapberry bug, Jadera haematoloma (Hemiptera: Rhopalidae). J. Insect Behav. 4: 509–530.Google Scholar
  10. Castric, V., Bernatchez, L., Belkhir, K., and Bonhomme, F. (2002). Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): A test of alternative hypotheses. Heredity 89: 27–35.Google Scholar
  11. Dodds, K. G., Tate, M. L., McEwan, J. C., and Crawford, A. M. (1996). Exclusion probabilities for pedigree testing farm animals. Theor. Appl. Genet. 92: 966–975.Google Scholar
  12. Dupuis, C. (1970). Heteroptera. In Tuxen, S. L. (ed.), Taxonomist's Glossary of Genitalia in Insects, Munksgaard, Copenhagen, pp. 190–209.Google Scholar
  13. Estoup, A., Scholl, A., Pouvreau, A., and Solignac, M. (1995). Monoandry and polyandry in bumblebees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol. Ecol. 4: 89–93.Google Scholar
  14. Godfray, H. C. J. (1994). Parasitoidis: Behavioral and Evolutionary Ecology, Princeton University Press, Princeton, NJ.Google Scholar
  15. Godfray, H. C. J., and Parker, G. A. (1992). Sibling competition, parent-offspring conflict and clutch size. Anim. Behav. 43: 473–490.Google Scholar
  16. Guo, S. W., and Thompson, E. A. (1992). Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48: 361–372.Google Scholar
  17. Haig, D. (1997). Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc. Roy. Soc. Lond. B 264: 1657–1662.Google Scholar
  18. Haldane, J. B. S. (1949). The association of characters as a result of inbreeding and linkage. Ann. Eugen. 15: 15–23.Google Scholar
  19. Hamilton, W. D. (1964). The genetical evolution of social behaviour,I & II.J. Theo. Biol. 7: 1–52.Google Scholar
  20. Hartl, D. L., and Clark, A. G. (1997). Principles of Population Genetics, 3rd ed., Sinauer Associates, Sunderland, MA.Google Scholar
  21. Houston, A. I., and McNamara, J. M. (2002). A self-consistent approach to paternity and parental effort. Philos. Trans. Roy. Soc. Lond. Ser. B 357: 351–362.Google Scholar
  22. Jennions, M. D., and Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75: 21–64.Google Scholar
  23. Jones, A. G. (2001). GERUD1.0: Acomputer program for the reconstruction of parental geno-types from progeny arrays using multilocus DNA data. Mol. Ecol. Notes 1 (available at http://dx.doi.org/10.1046/j.1471-8278.2001.00062.x).Google Scholar
  24. Kichler, K., Holder, M. T., Davis, S. K., M´arquez, R., and Owens, D. W. (1999). Detection of multiple paternity in the Kemp's ridley sea turtle with limited sampling. Mol. Ecol. 8: 819–830.Google Scholar
  25. Kight, S. L. (1995). Do maternal burrower bugs, Sehirus cinctus Palisot (Heteroptera: Cydnidae), use spatial and chemical cues for egg discrimination? Can. J. Zool. 73: 815–817.Google Scholar
  26. Kight, S. L., and Cseke, J. J. (1998). The effects of ambient temperature on the duration of maternal care in a burrower bug (Heteroptera: Cydnidae). J. Kans. Entomol. Soc. 71: 183–187.Google Scholar
  27. Koelewijn, H. P. (1998). Effects of different levels of inbreeding on progeny fitness in tiPlantago coronopus. Evolution 52: 692–702.Google Scholar
  28. Lynch, M., and Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753–1766.Google Scholar
  29. Margulis, S. W. (1997). Inbreeding-based bias in parental responsiveness to litters of oldfield mice. Behav. Ecol. Sociobiol. 41: 177–184.Google Scholar
  30. Mock, D. W., and Parker, G. A. (1997). The Evolution of Sibling Rivalry, Oxford University Press, New York.Google Scholar
  31. Moritz, R. F. A., Kryger, P., Koeniger, G., Koeniger, N., Estoup, A., and Tingek, S. (1995). High degree of polyandry in Apis dorsata queens detected by DNA microsatellite variability. Behav. Ecol. Sociobiol. 37: 357–363.Google Scholar
  32. Mutikainen, P., and Delph, L. F. (1998). Inbreeding depression in gynodioecious Lobelia siphilitica: Among-family differences override between-morph differences. Evolution 52: 1572–1582.Google Scholar
  33. Nalepa, C. A., and Jones, S. C. (1991). Evolution of monogamy in termites. Biol. Rev. 66: 83–97.Google Scholar
  34. Pemberton, J. M., Slate, J., Bancroft, D. R., and Barnett, J. A. (1995). Nonamplifying alleles at microsatellite loci: A caution for parentage and population studies. Mol. Ecol. 4: 249–252.Google Scholar
  35. Queller, D. C., and Goodnight, K. F. (1989). Estimating relatedness using genetic markers. Evolution 43: 258–275.Google Scholar
  36. Raymond, M., and Rousset, F. (1995). GENEPOP Version 1.2, population-genetics software for exact tests and ecumenicism. J. Hered. 86: 248–249.Google Scholar
  37. Rozen, S., and Skaletsky, H. J. (2000). Primer3. On the web for general users and for biologist programmers. In: Kravetz, S., and Misener, S. (eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365–386. Code available at http://www-genome.wi.mit.edu/genome software/other/primer3.html Google Scholar
  38. Sheldon, B. C. (2002). Relating paternity to paternal care. Philos. Trans. Roy. Soc. Lond. Ser. B 357: 341–350.Google Scholar
  39. Sites, R. W., and McPherson, J. E. (1982). Life history and laboratory rearing of Sehirus cinctus cinctus (Hemiptera: Cydnidae), with descriptions of immature stages. Ann. Entomol. Soc. Am. 75: 210–215Google Scholar
  40. Smith, R. L. (1979). Repeated copulation and sperm precedence: Paternity assurance for a male brooding water bug. Science 205: 1029–1031.Google Scholar
  41. Snyder, T. E. (1924). 'Adaptations’ to social life: The termites (Isoptera). Smithson. Misc. Collect. 76: 1–14.Google Scholar
  42. Southwood, T. R. E., and Leston, D. (1959). Land and Water Bugs of the British Isles, Frederick Warne, London.Google Scholar
  43. Wade, M. J. (1996). Adaptation in subdivided populations: Kin selection and interdemic selection. In Rose, M. R., and Lauder, G. (eds.), Evolutionary Biology and Adaptation, Sinauer Associates, Sunderland, MA, pp. 381–405.Google Scholar
  44. Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Jeremy M. Brown
    • 1
    Email author
  • Aneil F. Agrawal
    • 1
  • Edmund D. Brodie III
    • 1
  1. 1.Department of Biology and Center for the Integrative Study of Animal BehaviorIndiana UniversityBloomington

Personalised recommendations